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Abstract: Dormitory beds are assigned to students at random in China each year. However, a 

big majority of students are dissatisfied with their results, which will have an impact on their 

academic performance. The goal of this paper is to help students choose a suitable bed by 

using an algorithm after the initial allocation. This research constructs a bed allocation model 

and firstly employ the top trading cycles algorithm, which fulfills individual rationality, 

Pareto-efficiency, and strategy-proofness. Notwithstanding, this paper finds that the chance 

of indifferences cannot be precluded, despite the fact that this article let students rank beds as 

indicated by their inclinations for rooms and beds. Subsequently, the top trading cycles 

algorithm is ineffectual for this issue. The top trading absorbing sets algorithm is then applied 

to the general domain to create individual rationally, Pareto-efficient, and strategy-proof 

matching. This paper finds that the top trading absorbing sets algorithm is a suitable solution 

for bed allocation problem in Chinese universities and suggests universities to apply this 

algorithm after randomly allocating beds to freshmen to enhance the satisfaction of students. 
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1. Introduction 

Dormitory beds are assigned to students in China each year once they are admitted to universities. At 

the moment, most universities employ traditional methods to allocate dorms and beds, they allocate 

dormitories and beds based on students’ grades or last names. However, it is normal for students to 

be dissatisfied with what they receive after moving into the dormitory. Some students, for example, 

prefer the first-floor room to the third-floor room, while others prefer the top bunk to the lower bunk.  

It is critical that students live in a comfortable room with a comfortable bed. Since students will 

be living in the dormitory and sleeping on the same bed for at least four years, a comfortable living 

environment can have an impact on their academic achievement. That is, if a student who is not adept 

at climbing ladders is assigned to the top bunk, it is extremely likely that he or she will get wounded 

and will be absent from class, affecting his or her grades in some way. On the other hand, if this 

student is assigned to a lower bed based on his or her preferences, the number of situations mentioned 

above may reduce. The reason for this paper is to utilize a few mechanisms to further develop bed 

allocations after beds being haphazardly dispensed to freshmen in any case. 

The bed allocation issue in universities is a highly controversial issue, various specialists have 

made papers to look at this issue. Contrary to conventional wisdom, the majority of researchers treat 

the room as a variable in their models and employ the top trading cycles algorithm to address the 
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aforementioned issue. Regardless, the situation in China is exceptionally one of a kind comparable to 

that abroad. A large part of the time, students in China rest in aggregate rooms. Students have a variety 

of sleeping options because there are typically six people sharing a room and the rooms are very large. 

For example, light sleepers like the top bunk in the corner. That is the inspiration driving why the 

models referred to above are not sensible for China. In this paper, the model treats the bed in quarters 

as a variable, the issue of dorm distribution is refined into bed assignment which is essentially 

equivalent to “housing market”, proposed by Shapley and Scarf in the study “On cores and 

indivisibility” [1]. In “housing market”, there is a bunch of individuals, every one of them has strict 

inclination over a bunch of unified merchandise. At the end of the day, an individual cannot claim 

more than one good. Each individual is invested with a good and is permitted to exchange goods 

among themselves. Money-related compensation is prohibited throughout the entire interaction [1]. 

The conventional response for this kind of models is to apply an algorithm called the top trading cycle 

(TTC) algorithm. 

The aforementioned algorithm and the “housing market” have been the subject of numerous papers. 

The TTC algorithm now clearly possesses variable properties. This algorithm is resistant to 

manipulation, and that implies that specialists can get a superior portion by uncovering their actual 

preferences in this algorithm [2]. Therefore, the aforementioned algorithm is the critical mechanism 

that ensures individual rationality, Pareto-efficiency, and strategy-proofness in the domain of absolute 

inclination [3]. Subsequently, this paper, without skipping a beat, uses the TTC algorithm to handle 

the bed assignment issue in college. Despite the fact that students in the model are approached to rank 

beds as indicated by their inclinations for rooms and beds, it is actually quite common for them to be 

indifferent between different beds. Under such circumstance, this exploration finds that the TTC 

algorithm may not be fitting for handling bed segment issue as the resulting matching is not actually 

Pareto-efficient. 

Then, this paper endeavors to use another algorithm named the top trading absorbing sets (TTAS) 

algorithm, which obeys individual rationality, Pareto-efficiency and strategy-proofness on the overall 

space [4] to deal with bed assignment issue. 

2. Mechanisms 

2.1. The Bed Allocation Model 

This paper assumes a bed allocation problem is a four-tuple {S, B, R, ω}, where S represents a limited 

number of students and B represents a limited number of beds, both S and B should be in the same 

amount n (|S| = |B| = n), R refers to students’ preferences for beds, and ω is an initial endowment 

matching. Then, let ω(i) = hi, where i∈S, hi∈B, denote the original owners of beds. Subsequently, 

≻ denotes that the student has strict preference over beds. For example, b2 ≻ b3 means that student 1 

strictly prefers b2 to b3. Let ~ denote students’ weak preferences over beds. That is, b4~b5 describes 

student 1 is indifferent between b4 and b5. Likewise, b1 ≽ b2 means that student1 thinks b1 is at least 

as good as b2. Last but not least, in this model students are allowed to report indifferences.  

An allocation (or coordinating) is a bijective guide μ: S→B, where μi portray the bed distributed 

to student i under the assignment μ. A portion fulfills individual rationality assuming each student 

favors their last assignment μi to their original endowment ωi. That is, for every student i∈S, μi ≻ ωi. 

Furthermore, this paper called an assignment is Pareto-efficient in the event that there doesn't exist 

other allocation λ with the end goal that, for all i∈S, λi ≽ μi, and for some j∈S, λj ≻ μj. In this way, 

a component is Pareto-efficient in the event that it generally chooses a Pareto-efficient matching for 

each bed distribution issue. Thirdly, a strategy-proof allocation implies that each student cannot get 
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a superior distribution by controlling their preferences, in different words, truth-telling is a rule 

procedure for all students. 

2.2. Gale’s TTC Algorithm 

The bed designation issue is like house assignment issue somehow or another, and the old-style 

answer for this sort of issue is utilizing the TTC algorithm that is individual rationally, Pareto-efficient 

and strategy-proof on the space of strict preference [3]. 

Step 1: Let every student, right off the bat, point to their number one bed and each bed point to its 

underlying proprietor. There exists no less than one cycle and no cycles converge. Then, at that point, 

each bed and understudy in a cycle is eliminated. 

Step n: Every student is allowed to point to their number one bed among the leftover ones, and 

each bed points to its underlying proprietor. There exists no less than one cycle and no cycles 

converge. Consequently, each bed and understudy in a cycle is eliminated. 

Since everything is limited, the algorithm ceases when no students and beds left. 

From the outset, this research assumes that all students could report strict preferences over beds 

after they thinking about both their preferences over rooms and their preferences over beds. Under 

such presumption, the TTC algorithm is a reasonable algorithm for bed designation issue in university. 

Subsequently, this paper applies a mechanism generalized the TTC algorithm as follows: First and 

foremost, this mechanism takes the inclinations of students reporting indifferences and transforms 

them into absolute sequences through (rigid or irregular) tie-breakers, and afterward applies the TTC 

algorithm [2]. 

Nonetheless, this paper observes that it is as yet workable for students to have differences despite 

the fact that they are approached to consolidate their preferences over rooms and their preferences 

over beds. On account of permitting students to report indifferences, the use of this system does not 

be guaranteed to prompt Pareto-efficient allocation. This will be shows in the accompanying example. 

Example 1: Let S = {s1, s2, s3, s4, s5} and B = {b1, b2, b3, b4, b5} be the group of students and beds, 

respectively. Let ω(si)=bi for all i∈{1, 2, 3, 4, 5} be the underlying endowment. The inclination 

profile is shown in Table 1 below. 

Table 1: Inclination profile of five students. 

s1 s2 s3 s4 s5 

b2 b3 b4, b5 b1 b2 

b1 b1 b3 b5 b4 

b4 b2 b2 b4 b5 

b3 b5 b1 b3 b1 

b5 b4  b2 b3 

 

It tends to be seen that there are two indifferences binary relation in Table 1, subsequent to utilizing 

arbitrary tie-breakers and applying the TTC algorithm, there are four potential consequences of the 

mechanism introduced above, in particular μ1, μ2, μ3, μ4. 

μ1 = {(s1, b1), (s2, b3), (s3, b5), (s4, b4), (s5, b2)} 

μ2 = {(s1, b2), (s2, b3), (s3, b4), (s4, b1), (s5, b5)} 

μ3 = {(s1, b1), (s2, b3), (s3, b4), (s4, b5), (s5, b2)} 

μ4 = {(s1, b2), (s2, b3), (s3, b5), (s4, b1), (s5, b4)} 

It is easy to see that μ1 and μ2 is Pareto dominated by μ3 and μ4, respectively. Consequently, the 

TTC algorithm and the mechanism referenced above is not reasonable for taking care of bed 

assignment issue in university. 
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2.3. Top Trading Absorbing Sets Algorithm 

An absorbing set is a bunch of hubs A that fulfills two circumstances: (i) for any two hubs vi, vj ∈ A, 

there may be a way beginning with one then onto the next (inwards association), and (ii) there is 

absolutely no chance from any hub vi ∈ A to any hub vj ∉ A (no inner-outside association). An 

absorbing set is paired-symmetric in the event that every one of its hubs has a place with a symmetric 

pair [4]. 

Two hubs vi,vj ∈ V constitute a symmetric pair if there is a path from vi to vj and a path from vj 

to vi [4].  

Step 0: This algorithm chooses a need positioning of beds; that is, a finished, transitive and 

antisymmetric twofold connection over B. 

Step 1-1: This algorithm lets every student pick their number one bed and each bed point to its 

underlying proprietor. There is no less than one absorbing set [5]. Then select the absorbing set in 

this step. 

Step 1-2: This algorithm tracks down the matched symmetric-paired sets, if any. By assigning 

each student an underlying bed, the algorithm eliminates all students and beds that are in the paired-

symmetric absorbing sets.  

Step 1-3: This algorithm selects the leftover absorbing sets, if any. For every student choosing 

more than one bed, they are asked to select an exceptional bed to point utilizing the accompanying 

standard: the person point to the maximal bed with the most noteworthy need, not quite the same as 

their underlying bed. 

Step 1-4: Then, at that point, in the subgraph framed by the groups and the bends chose in last 

step, there is generally somewhere around one cycle, and no two cycles converge. Subsequently, this 

algorithm assigns temporarily to every student in the aforementioned cycles the bed the person is 

selecting, but let them continue to participate in the algorithm. 

Step n-1: Allow every excess student to choose their maximal beds from among the extra ones 

and every bed choose continuous owner. 

Step n-2: This algorithm tracks down the matched symmetric-paired sets, if any. The algorithm 

eliminates all students and beds in the paired-symmetric absorbing sets by assigning each student an 

underlying bed.  

Step n-3: This algorithm selects the leftover absorbing sets, if any. For every student selecting 

multiple bed, they are asked to select an exceptional bed to point utilizing the accompanying standard: 

From among the beds that have not yet been assigned to the individual in question, the one with the 

highest need points to the highest bed. This algorithm assumes all maximal beds have been designated 

to her essentially k times, subsequently, at that point, the person is asked to focus on the maximal bed 

with the most elevated need that has not been assigned to the person in question for k+1 times yet. 

Step n-4: Then, at that point, in the subgraph framed by the groups and the bends chose in last 

step, there is generally something like one cycle and no two cycles cross. This algorithm assigns 

temporarily to every student in these cycles the bed the person is pointing, however let them stay in 

the algorithm. 

Since everything is limited, the algorithm ceases when no students and beds left. 

The following example shows the details of how the TTAS algorithm functions for a specific bed 

distribution issue. 

Let S = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10} and B = {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10} be the set of 

students and beds, respectively. Let ω(si) = bi for all i∈{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the underlying 

endowment. The inclination profile is shown in Table 2. 
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Table 2: Inclination profile for ten students. 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

b2 b1 b4, b5 b1 b6 b6, b7 b6 b5, b9 b9, b10 b9, b10 

b1 b2 b3 b4 b3  b7 b8   

   b5 b4      

    b5      

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

 

The priority ranking is as follows: 1 ≻ 2 ≻ 3 ≻ 4 ≻ 5 ≻ 6 ≻ 7 ≻ 8 ≻ 9 ≻ 10. 

The detailed steps of how the TTAS algorithm works are shown below in Figure 1. 

 

Figure 1: Step 1 of the TTAS algorithm. 

It can be seen that there are three absorbing sets in Figure 1: K1 = {s9, b9, s10, b10}, which is paired-

symmetric. Thus, s9 and s10 are removed by allocating b9 to s9 and b10 to s10. Other absorbing sets are 

K2 = {s1, b1, s2, b2} and K3 = {s6, b6, s7, b7}. For this situation, the need positioning over beds is 

applied, and the cycles c1 = (s1, b2, s2, b1) and c2 = (s6, b7, s7, b6) are composed. Then, the algorithm 

transitionally allocates b2 to s1, b1 to s2, b7 to s6 and b6 to s7. 
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Figure 2: Step 2 of the TTAS algorithm. 

It can be seen that there are three paired-symmetric absorbing set in Figure 2, K4 = {s1, b2}, K5 = 

{s2, b1} and K6 = {s7, b6}. These are then removed by allocating b2 to s1, b1 to s2, and b6 to s7. 

 

Figure 3: Step 3 of the TTAS algorithm.  

Figure 3 shows two absorbing sets, K7 = {s6, b7} and K8 = {s4, b4}, which are paired-symmetric. 

Hence, these are removed by allocating b4 to s4 and b7 to s6. 
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Figure 4: Step 4 of the TTAS algorithm. 

There is only one absorbing set in Figure 4, which is K9 = {s3, b3, s5, b5}. Then, the need positioning 

over beds is executed and thus forming a cycle c3 = (s3, b5, s5, b3). Subsequently, the algorithm 

provisionally allocates b5 to s3 and b3 to s5. 

 

Figure 5: Step 5 of the TTAS algorithm. 

There are two absorbing sets in Figure 5, K10 = {s3, b5} and K11 = {s5, b3}, which are paired-

symmetric. Thus, these are removed by allocating b5 to s3 and b3 to s5. 
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Figure 6: Step 6 of the TTAS algorithm. 

It is clear that only s8 and b8 remain in this step, as shown in Figure 6, which form a paired-

symmetric absorbing set K12 = {s8, b8}. Hence, this is removed by allocating b8 to s8. 

Therefore, the resulting allocation is 

μ = {(s1, b2), (s2, b1), (s3, b5), (s4, b4), (s5, b3), (s6, b7), (s7, b6), (s8, b8), (s9, b9), (s10, b10)}. 

The TTAS algorithm decides an entitlement contingent upon the need positioning chose at Stage 

0. A system ν is a TTAS mechanism assuming a boundary positioning exists to such an extent that 

the mechanism chooses, for each issue, the ascription chose by the TTAS algorithm with this need 

ranking [4]. For any need positioning, the system ν is individual rationally, Pareto-efficient and 

strategy-proof [4]. 

3. Discussion 

A fundamental weakness of the TTAS algorithm is its high time intricacy, which emerges in light of 

the fact that the TTAS algorithm can exchange along some “terrible” cycles. That is, cycles where 

every one of the related individuals is as of now likely doled out to a bed in its favored set [6]. 

Alcalde-Unzu and Molis leave open whether or not the TTAS algorithm runs in polynomial time 

[4]. Aziz and de Keijzer answer this inquiry in the negative by showing a group of occasions on which 

the TTAS algorithm operates in extravagant time [7]. 

Nonetheless, flat mates likewise significantly affect students’ ensuing scholastic presentation in 

various ways, which is a factor that this paper does not mention. Being roommates with higher-

scoring fellows has positive influence on bachelors’ accomplishment, especially for low-scoring 

fellows [8]. 

Strong proof indicates that peers in all actuality do matter for scholastic accomplishments, with 

flat mate explicit companion impacts being around 33% of the impacts of own capacity. These 

impacts are likewise observed to be non-direct, and to change across financial and geological 

backgrounds [9]. 

The students who pick their own flat mates in the class are better than the students who are 

haphazardly allocated by significant classifications as far as scholarly execution and complete 

execution in school, which demonstrates that the companion impact of flat mates on the development 

of college students assumes a significant part in scholastic presentation and thorough performance 

[10]. Acculturated quarters designation is helpful for lessening dorm inconsistencies, keeping away 

from struggle chances and guaranteeing grounds safety [11]. 

Thus, it is likewise essential to update bed distribution model by including students' preferences 

over flat mates for what's in store.  
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4. Conclusion 

Bed allocation problem is an important problem in university in China. The reason is that students 

will sleep on the bed they get for at least four years, quality rest can affect students’ academic 

performance in some way. However, many students are not satisfied with their bed. This paper tries 

to use mechanisms to improve bed matching in university. By building a bed allocation model and 

applying the TTAS algorithm  

The objective of this paper is to assist students with picking a satisfying bed by utilizing an 

algorithm after the underlying designation. In this exploration, this research develops a bed allocation 

model and first and foremost utilize the TTC algorithm. Notwithstanding, this paper finds that the 

chance of indifferences cannot be precluded despite the fact that this paper let students rank beds as 

per their preferences for rooms and beds. Subsequently, the TTC algorithm is ineffectual for this 

situation. The TTAS algorithm is then used to create individual rationally, Pareto-efficient, and 

strategy-proof matching on the overall space. As a result, this article finds that the aforementioned 

algorithm is a suitable solution for bed allocation problem in Chinese universities. Thus, this article 

suggests that Chinese universities could apply the aforementioned algorithm after randomly 

allocating beds to freshmen to enhance the satisfaction of students. However, flat mates likewise 

significantly affect students’ ensuing scholastic presentation in various ways, which is a factor that 

this paper does not mention. The future study could focus on designing a new model by including 

students’ preferences over flat mates for what is in store.  
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