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Abstract: Cooperative game theory is concerned with exploring schemes for allocating 

payoffs among rational participants in coalitions and has produced several solution designs 

due to the different emphasis on criteria such as stability and fairness, but this theory has not 

been widely applied in the field of portfolio selection. In this paper, we explore further 

applications of the solution concepts of cooperative games based on the model of optimal 

portfolio selection developed in previous studies, which is modelled in a static form of a 

non-cooperative zero-sum game between investors and the market and a cooperative game 

between investors. We propose a risk modified Shapley value based on the tradeoff between 

return and risk in the financial market based on the Shapley value, and the performance of this 

solution shows an evident improvement. We also introduce some other solution concepts of 

cooperative games and give an approach to construct a nucleolus-based portfolio using 

Maschler's scheme to compute the nucleolus, and the results demonstrate that the allocation 

schemes based on the cooperative game theory perform well. 

Keywords: Optimal Portfolio Selection, Cooperative Game Theory, Risk Modified Shapley 

Value, Nucleolus, Stock Market 

1. Introduction 

In financial markets, investment decisions are made by selecting a range of financial instruments. It is 

generally believed that it is less risky to diversify investments than to own only one type of asset. 

When investing in diversified assets, due to the existence of risk and uncertainty, investors always 

seek to build an optimal portfolio to determine the selection of asset classes, the individual securities 

within each class, and their corresponding weights. For this purpose, numerous models have been 

optimized from different perspectives, which often lead to different results due to the different criteria 

used to measure risk. Modern portfolio theory was greatly advanced by the presentation of 

Markowitz's portfolio selection theory [1], which provides a mathematical framework for 

constructing a portfolio from the perspective of mean-variance analysis. To achieve the best tradeoff 

between return and risk, the optimal portfolio is determined by maximizing return at a given level of 

risk or minimizing risk at a given level of return. In addition, the variance of asset prices is used to 

characterize risk and the utility function is introduced to measure how happy or satisfied an economic 

agent is.  

Game theory is the study of mathematical models of strategic choices and interactions between 

rational decision-makers, which has a variety of applications in the fields of economics and finance. 
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Depending on whether there is a binding agreement between interacting parties, game theory can be 

broadly divided into cooperative games and non-cooperative games. In non-cooperative games, the 

focus is on the strategic choices of competing antagonists to improve the participants' own utility (or 

reduce their own cost). The construction of Nash equilibrium theory has contributed significantly to 

the development of this field, according to which the optimal outcome of a game is one in which no 

player has an incentive to deviate from his or her chosen strategy after taking the opponents' choices 

into account. In contrast, cooperative games seek win-win outcomes for participants, i.e., sharing of 

resources and complementarity of players' strengths, and are primarily concerned with the issue of 

achieving optimal returns within the coalition and constructing appropriate allocation schemes 

among coalition members. And to evaluate how good an allocation is, there are numerous criteria 

such as stability and fairness. By emphasizing different aspects of these criteria, a number of solution 

concepts have been proposed: the core, the Shapley value, the bargaining set, the nucleolus, the τ 
value, and so on.  

Compared with non-cooperative games, the study of which has long dominated research since 

John Nash's pioneering work [2], the application of cooperative game theory in the field of financial 

investment is relatively limited. As cooperative games are also played under risk and uncertainty and 

aim to maximize the utility function, they share many similarities with optimal portfolio selection. 

Therefore, it is a natural idea to investigate the application of cooperative game theory to portfolio 

optimization. Previous research has mainly focused on the application of Shapley value in different 

market environments and asset class selection. Habip Kocak set participants as investors with 

different risk appetites (risk-averse player, risk-neutral player, and risk-seeking player), set the 

counterparty nature to different market environments (balanced market, unbalanced market, and risky 

market), and finally determined the optimal investment portfolio using the Shapley value [3]. Peyman 

Tataei, et al. also built the zero-sum model (between investors and the market) and examined that the 

cooperative game portfolio significantly outperformed the market over 12 years (2006 - 2017) 

according to the Sharpe and Treynor indices [4]. Ibrahim, et al. studied sectoral portfolio selection 

before and after the general election in Malaysia and provided a model considering the different stock 

market sectors as participants versus the market over two time periods [5].  

Note that the model structure of cooperative game theory applied to portfolio optimization 

introduced above is similar  and all of them construct allocation schemes based on the Shapley value. 

However, when the Shapley value is applied to specific research areas, there are still some 

shortcomings that could be improved. In particular, it does not fully account for the risks borne by 

different participants. Dai and Xue studied the Shapley value for profit sharing among partners in the 

case of dynamic coalitions and proposed a risk-based method to improve algorithm performance [6]. 

Fang, et al. developed and implemented an improved Shapley value approach to achieve the optimal 

profit sharing for multiple distributed energy resources coexisting in a combined heat and 

power-virtual power plant problem [7]. Xie, et al. modelled cyber threat intelligence information 

sharing as a cooperative game problem and proposed a reward mechanism based on Shapley value to 

make the allocation fair and reasonable [8]. Although the above work has improved the Shapley value 

for certain applications, the underlying idea of the modification is the same, namely, to construct a 

vector of risk coefficients within the grand coalition to characterize the risk borne by each individual, 

differing from the weights that equally shared by the number of participants, and then to increase or 

decrease the product of this value and the grand coalition utility on top of the original Shapley value 

for each participant to achieve. It is important to note that the modification needs to be made ensuring 

that the allocation scheme is included in the imputation set (checking the individual rationality and 

efficiency of the participants) so that the cooperative game can proceed. We have therefore added this 

step for the correction compared to the previous design. Regarding the application of portfolio 

investment, higher returns are generally accompanied by higher risks, but this does not mean that 
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high-risk assets must dominate low-risk counterparts in terms of the return. In fact, a range of 

research focused on the low-risk anomaly, a puzzling phenomenon that assets with lower risks tend to 

earn higher returns, which is contradictory to the established capital market theory [9][10][11]. Thus, 

it may not be appropriate to determine the proportion of grand coalition utility to be added (or 

subtracted) to each investor based solely on the level of risk he or she takes. Instead, to modify the 

Shapley value considering both return and risk, we use the Sharpe ratio to characterize the risk 

coefficients vector, i.e. we prefer to assign more grand coalition utility amount to participants with a 

high Sharpe ratio.  

Apart from proposing a risk modified Shapley value for portfolio selection, we also explore the 

performance of using the nucleolus solution concept to construct the allocation scheme, based on an 

introduction to the core, the least core, and the Maschler's scheme for computing the nucleolus. Our 

model results suggest that, in addition to the Shapley value-based construction methods, other 

cooperative game solution concepts such as the nucleolus could also be effective potential 

construction ideas.  

Following previous studies [3][4][5], the optimal selection problem is characterized by a static 

model of a non-cooperative zero-sum game between investors and the market to determine the utility 

values of all coalitions and a cooperative game between investors to decide the payoff allocation 

among participants. We divide the three game participants according to the market capitalization of 

the U.S. stock market and use four individual stocks under the corresponding index respectively as 

available strategies (player A: large-cap companies from the S&P 100 Index, player B: mid-cap 

companies from the S&P MidCap 400 Index, player C: small-cap companies from the S&P SmallCap 

600 Index), while the market with daily stock prices is divided into two periods before and after the 

outbreak of the Russia-Ukraine conflict. And lastly, the performance of different portfolio schemes is 

measured using the Sharpe ratio and the Sortino ratio. 

2. Cooperative Game Theory 

Transferable utility (TU)1 cooperative game in a characteristic form is denoted by a pair (N, v), 
where N = {1,2,⋯ , n} is a finite set of players in the grand coalition, and v is the characteristic 

function of the game. The characteristic function with transferable utility is a real-value mapping 

v: 2N → R with v(∅) = 0. Any subset S of N is called a coalition, and v(S) represents the maximum 

utility that the coalition S ⊆ N can achieve, regardless of the actions that players outside the coalition 

may take. The amount of payoff that player i ∈ N can receive from the grand coalition payoff v(N) is 

denoted as xi, and x = (x1, x2, ⋯ , xn) gives an allocation scheme of the game v, where n = |N| is the 

cardinality of N. It is clear that the vector x ∈ Rn  must satisfy two conditions to ensure that a 

cooperative game can be formed: 

(i) ∑ xi
n
i=1 = v(N) (efficiency condition) 

(ii) xi ≥ v(i),  ∀i ∈ N (individual rational condition) 

We refer to the set formed by all the vectors x ∈ Rn satisfying the above two conditions as the 

imputation set I(v). And we focus on the TU cooperative games with superadditivity, which means 

that 

v(S) + v(T) ≤ v(S ∪ T),  ∀S, T ⊆ N,  S ∩ T = ∅. (1) 

                                                
1 The utility of a game is transferable if one player can transfer part of the utility to another players without any loss, and 

such a type of game is called a transferable utility (TU) game. In other words, one can construct an appropriate rule to 

allocate the obtained coalition utility among the players. 
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The general idea of superadditivity is that if two disjoint subcoalitions S and T cooperate, the 

payoff of the coalition S ∪ T is larger than the sum of the payoffs of these two subcoalitions, i.e. 

coalitions will yield greater payoffs when they choose to cooperate. If a cooperative game is not 

superadditive, then coalitions will not tend to cooperate with each other, so the cooperative game 

problems we study are generally superadditive. 

2.1. Risk Modified Shapley Value 

The Shapley value is designed by the principle of fair allocation, which means that each player 

receives a proportional payoff corresponding to the average marginal value of his or her contribution 

to the coalition. Suppose that a coalition S containing player i can achieve a maximum payoff v(S), 
while the coalition formed by the players in S excluding i can achieve v(S\{i}). Therefore, the 

marginal contribution of player i made to the coalition S is 

mi
S = v(S) − v(S\{i}). (2) 

By taking the average of mi
S over all the different possible permutations in which coalitions could 

be formed, we can obtain the Shapley value for the player i of game v: 

ϕi(v) = ∑
(s − 1)! (n − s)!

n!
i∈S⊆N

⋅ mi
S, (3) 

where s and n are the cardinality of S and N respectively. Or alternatively, it can be written as 

ϕi(v) =
1

n
∑ (

n − 1

s − 1
)
−1

i∈S⊆N

⋅ mi
S. (4) 

An intuitive interpretation of equation (4) is: 

ϕi(v) =
1

number of players
∑

marginal contribution of i for coalition S

number of coalitions including i of size s
coalitions S including i

. (5) 

The vector ϕ(v) = (ϕ1(v), ϕ2(v),⋯ ,ϕn(v)) is called the Shapley value of game v.  

However, the Shapley value used to allocate profits has its weaknesses, for example, it does not 

take the risk borne by each participant in the game into account, which is particularly important in the 

application of the portfolio selection. Risk is omnipresent when making investment choices, so we 

should manage risk effectively while expecting higher returns. Participants with a high Sharpe ratio 

tend to perform better in terms of the return-risk tradeoff, so it is reasonable to increase the returns 

allocated to participants with a higher Sharpe ratio rather than modifying them solely based on risk. 

Notice that in the Shapley value allocation scheme, the equation (4) shows that the assumed risk 

borne by each participant is equivalent (that all equals1/n), which means that each participant is 

assumed to bear the same risk without taking the actual different risks into account. Obviously, this is 

an ideal situation. In fact, different markets, different financial assets, and different stocks carry 

different risks. So it is of vital necessarity to introduce a risk-sharing coefficient vector by Sharpe 

ratio to quantify the return under risk and improve the original results by constructing a modified 

Shapley value based on this risk-sharing vector. Sharpe ratio is a widely used reward-to-volatility 

criteria to measure the performance of portfolios, defined as: 

Sh. r.≔
E(Rp) − Rf

σp
=
μp
Tx − Rf

σp
, (6) 
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where E(Rp) and σp are the expected return and standard deviation of the portfolio, Rf is the risk 

free rate. We assume Rf = 0% here, and the expected return is estimated by average return of the 

portfolio x. It is reasonable that one prefers the higher Sharpe ratio portfolio, i.e. one can get more 

reward per unit of volatility. Assume the risk-sharing coefficient of player i ∈ N  is Ri , where 
∑ Rii∈N = 1. Firstly we calculate the Sharpe ratio for each participant Sh. r. (i), and then obtain Ri by 

normalization, i.e. 

Ri =
Sh. r. (i)

∑ Shn
j=1 . r. (j)

. (7) 

The difference between Ri and the equally shared risk is denoted as 

ΔRi ≔ Ri −
1

n
. (8) 

Obviously, ∑ ΔRii∈N = 0. Therefore, the risk modified payoff allocated to player i ∈ N is equal to 

v(N) ⋅ ΔRi. Follow the previous studies [6][7][8] on different specific areas, the identical basic idea 

for proposal risk modified Shapley value is: 

ϕi
′(v) = ϕi(v) + v(N) ⋅ ΔRi. (9) 

But in fact, to determine whether this proposal scheme could be applied, we need to verify the 

efficiency condition and individual rational condition: 

It is easy to check that the modification preserves the efficiency condition: ∑ ϕi
′(v)i∈N =

∑ (ϕi(v) + v(N) ⋅ ΔRi)i∈N = ∑ ϕi(v)i∈N + v(N) ⋅ ∑ ΔRii∈N = v(N). To guarantee the individual 

rational condition holds, we need to check ϕi(v) + v(N) ⋅ ΔRi > v(i),  ∀i ∈ N, which is equivalent to 

ΔRi >
v(i) − ϕi(v)

v(N)
,  ∀i ∈ N. (10) 

Note that the right hand side of the inequality (10) is a negative value,  since ϕi(v) > v(i) holds 

for every i ∈ N in the Shapley value. Thus, for those participants who take a higher risk than the 

equal average 1/n (i.e. ΔRi > 0), it holds directly. This is because these participants would receive a 

higher payoff after the modification, and they have no reason to reject the proposal. But the 

participants who take a lower risk with ΔRi < 0, they need to give up some of their payoff to others.  

Actually, they would still tend to form coalitions if the inequality (10) can be satisfied, even 

though there is a partial reduction in their payoff. However, if the value of ΔRi is too low, which 

means that a participant with very low risk would need to cede so much benefit that the individual 

rationality condition would be broken, and then the coalition would not be formed. Thus, if the 

inequality (10) is broken, the proposal is meaningless. 

Therefore, based on the equation (9), we design a second-step modification. Subject to satisfying 

efficiency condition, participant 𝑖 who breaks inequality (10) after the adjustment is assigned v(i) as 

the allocation amount, which also means that other participants j, who increase their allocation after 

adjustment or decrease their allocation after adjustment but are still above v(j), share equally the 

difference between v(i) and the ϕi
′(v) previously proposed by equation (9). This will be iteratively 

proceed until a solution is generated that satisfies both efficiency and individual rationality. 
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Figure 1.  Algorithm 1. 

2.2. Nucleolus 

In addition to the Shapley value, which distributes payoffs according to marginal contribution, there 

are a number of other static allocation schemes within the grand coalition. The core, which addresses 

the fairness and stability of allocations within the coalition, guarantees that neither an individual 

player nor a subcoalition is inclined to leave the grand coalition in order to achieve a higher payoff. 

More precisely, the core C(v) of v is defined as: 

C(v) ≔ {x ∈ Rn| ∑ xii∈N = v(N),  ∑ xii∈S ≥ v(S),  ∀S ⊂ N}. (11) 

Note that the core of a cooperative game can be either an area (or a point), or empty. To overcome 

these two main difficulties, nonexistence and nonuniqueness, one can strengthen or relax the 

definitional inequalities of the core. It is a natural idea to consider the least core [12][13]. The excess 

of coalition S with respect to the allocation scheme x is given by 

e(S, x) ≔ v(S) −∑xi
i∈S

. (12) 

The excess is used to measure the unhappiness of the coalition S under current allocation scheme 

x. The larger this value is, the unhappier the coalition S will be with x. From the definition of the core, 

x is in the core if and only if all the excesses are nonpositive. By adding a uniform slack ϵ to the 

inequalities of each subcoalition in the core, it gives the definition of the ϵ-core: 

Cϵ(v) ≔ {x ∈ Rn| ∑ xii∈N = v(N),  ∑ xii∈S ≥ v(S) − ϵ,  ∀S ⊂ N}. (13) 

The least core is the set of all possible schemes x satisfying (13) for the minimum ϵ. Hence, we can 

obtain the least core by minimizing the maximum excess of all subcoalitions: 

Cminϵ(v) ≔ min
x∈Cϵ(v)

ϵ = min
x∈Cϵ(v)

max
S⊂N

 e(S, x)  . (14) 
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Or alternatively, the least core can be viewed as solving a linear program: 

minimize ϵ
subject to e(S, x) ≤ ϵ, ∀S ⊂ N

∑

i∈N

xi = v(N)
(15) 

The nucleolus of a TU cooperative game (N, v) is defined as: 

Nu(v) ≔ { x ∈ I(v) | θ(x)  ≤L  θ(y), ∀y ∈ I(v) }, (16) 

where the vector θ(x) is constructed by sorting the excess of all subsets of the grand coalition N in 

decreasing order, i.e. θi(x) ≥ θj(x)  for 1 ≤ i ≤ j ≤ 2n . We use α <L β  to denote that α  is 

lexicographically smaller than β, and α ≤L β indicates either α <L β or α =  β. The nucleolus of a 

TU cooperative game always consists of a point that in the core whenever the core is nonempty [14]. 

In fact, the computation of the nucleolus can be obtained by solving a series of linear programs 
(Oi)i=1,2,⋯ recursively. Let e1(x), e2(x),⋯ sorted in decreasing order be the excesses of all 2n − 2 

coalitions (except ∅ and N) with respect to x. The linear program (15) for calculating the least core is 

equivalent to minimizing e1(x). Use ϵi and Pi(ϵi) to denote the optimal objective value and the set of 

coalitions for which the constraints are realized as equalities in the optimal solution to the 

optimization program (Oi) . Obviously, ϵ1 > ϵ2 > ⋯ , P1(ϵ1) ⊂ P2(ϵ2) ⊂ ⋯ . Then recursively 

minimize the second largest excess e2(x), the third largest excess e3(x), and so on, until there exists 

L  such that PL(ϵL)  contains all the nonempty subsets of N , i.e. PL(ϵL) = 2
N\∅ . This recursive 

algorithm is called the Maschler's scheme [15][16], which eventually leads to a single vector, the 

nucleolus. 

Figure 2.  Algorithm 2. 

Note that Maschler's scheme might be efficient for games with a small number of participants. 

However, for a large number of participants, this method is limited by the large computational 

complexity of the exponential scale, which prevents satisfactory solutions from being obtained at a 

high computational speed. When this situation occurs, we can consider some other algorithms 

instead. For example, Durga Prasad proposed an algorithm to obtain the nucleolus in solving at most 
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(n − 1) linear programs for n-player games, where some constraints are dropped at each iteration 

without affecting the unique final solution [17]. 

3. Data and Methodology 

Standard&Poor's (S&P) is a company with a global reputation as a creator of financial market indices 

and is widely used as a data source for investment benchmarking. The S&P 100 Index is a subset of 

the famous S&P 500 Index, designed to measure the performance of large-cap U.S. companies, and 

consists of 100 major blue chip companies across a range of industry sectors. In addition, the S&P 

MidCap 400 Index provides investors with a benchmark of 400 mid-cap companies, reflecting the 

unique risk and return characteristics of this market segment. And the S&P SmallCap 600 Index is 

designed to evaluate the performance of the small-cap segment of the U.S. equity market, with the 

goal of tracking the financial viability and liquidity of companies that meet certain inclusion criteria. 

All data is sourced from Yahoo Finance. 

This research is modelled as a zero-sum2 non-cooperative game between investors and the market 

and a cooperative game among investors in a static3 form. For the market, its movement is influenced 

by many factors, e.g., the economy, inflation, and politics, etc. In particular, [5] explores the 

systematic impact of political events (general elections) on financial markets and uses pre- and 

post-election phases to characterize market strategies. In the era of globalization of economy and 

trade, a geopolitical crisis in one region often affects not just the countries in that region, but the 

whole world. Since the outbreak of the Russia-Ukraine conflict, there have been significant and 

long-lasting impacts on the global economy and financial markets on all fronts. This not only has a 

direct negative influence on energy supply and inflationary pressures, but also leads to a number of 

potential indirect risks such as slower consumer spending, supply chain distortions, credit and asset 

write-downs, and tighter monetary policies, etc. [18][19]. Therefore, in this paper we will try to 

distinguish market strategies using two phases before and after the start of the Russia-Ukraine war. 

Ever since Russia's invasion of Ukraine on 24 February 2022, a historic series of changes across 

global financial markets have occurred. From this perspective, We choose this date as the 

segmentation node to reflect the two dynamics within the market. 

Period 1 (P1): 1 September 2021 -- 23 February 2022, 120 trading days in total. 

Period 2 (P2): 24 February 2022 -- 1 September 2022, 131 trading days in total. 

For the investor, it is assumed that the participants are differentiated by market capitalization of the 

companies, using players A, B, C to represent the investment in large-cap, mid-cap and small-cap 

U.S. companies respectively. Note that companies with larger market capitalization tend to be more 

established and therefore considered to be less risky, but at the same time it may imply a smaller 

potential return. On the other hand, the younger small-cap companies tend to serve new industries and 

niche market, which are generally seen as the riskiest of the three types. Accordingly, the strategies 

(stocks) of each player are given by the several top constituents by index weight of the corresponding 

S&P Index. i.e. 

A: Large-cap companies, chosen from the constituents of S&P 100 Index. 

B: Mid-cap companies, chosen from the constituents of S&P MidCap 400 Index. 

C: Small-cap companies, chosen from the constituents of S&P SmallCap 600 Index. 

                                                
2 Zero-sum games are non-cooperative games in which the parties involved are in a strictly competitive situation, where a 

gain for one party implies a loss for the other, and where the sum of gains and losses for all parties always adds up to 

zero. 
3 Static games are games in which participants choose simultaneously or not simultaneously but the later actor does not 

know what decision the first actor has taken. In contrast, in a dynamic game, participants act sequentially and the later 

actor is able to observe the decision of the first actor. 
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Table 1.  Players and strategies. 

 

The daily adjusted closing price of each stock is used to calculate the return rate. Assume Pi,t is the 

daily adjusted closing price of stock i at time t, then the rate of return of the stock i at time t is 

ri,t =
Pi,t − Pi,t−1
Pi,t−1

(17) 

for i = 1,⋯ ,12 and t = 1,⋯ , T, where T is the number of returns obtained in period 1 or period 2. 

We use the geometric average to estimate the mean return rate of each stock at these two time periods 

respectively, i.e. 

μi = [∏(1 + ri,t)

T

t=1

]

1
T

− 1. (18) 

By explaining the behavior of investors in a cooperative game perspective, we try to give optimal 

portfolio selection schemes not necessarily the best one but the best available choices according to the 

cooperative game solution concepts within the Nash Equilibrium range. Investors and the market are 

in conflict (zero-sum game) and the payoff gained by the investors is treated as a loss of the same 

amount to the market. Denote the payoff matrix as Qm×2, where the row number m indicates the 

strategies that can be chosen in coalition S for the investors while there are only two choices (P1 or 

P2) for the market. For the investors, they always tend to construct a portfolio vector xm × 1 among 

the optional strategies they can choose to maximize the possible minimum payoff throughout two 

periods. Assume no short selling. The optimal value for each coalition is the following optimization: 

(Investor)

{
 
 

 
 
maximize v
subject to QT ⋅ x ≥ v ⋅ 12×1

11×m ⋅ x = 1

x ≥ 0

(19) 

On the contrary, since investors' gain is actually the market's loss, the market player chooses the 

probability vector y2×1 to obtain the optimal solution by the following linear program: 

Player Strategy Symbol Name Sector 

A 

A1 AAPL Apple Inc. Information Technology 

A2  MSFT Microsoft Corp. Information Technology 

A3  AMZN Amazon.com Inc. Consumer Discretionary 

A4  TSLA Tesla Inc. Consumer Discretionary 

B 

B1 TRGP 
Targa Resources 

Corp. 
Energy 

B2 CSL Carlisle Cos. Industrials 

B3 STLD Steel Dynamics Inc. Materials 

B4 EQT EQT Corp. Energy 

C 

C1  ADC Agree Realty Corp. Real Estate 

C2 EXLS 
ExlService Holdings 

Inc. 
Information Technology 

C3 LNTH 
Lantheus Holdings 

Inc. 
Health Care 

C4 SM SM Energy Corp. Energy 
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(Market)

{
 
 

 
 
minimize u
subject to Q ⋅ y ≤ u ⋅ 1m×1

11×2 ⋅ y = 1

y ≥ 0

(20) 

Denote the optimal values for linear program (19) and (20) as v∗ and u∗ respectively. Actually one 

can show that v∗ = u∗, and this balanced state achieves the Nash Equilibrium. Or alternatively, we 

can combine (19) and (20) into an optimization problem: 

maximize v − u
subjectto QT ⋅ x ≥ v ⋅ 12×1

Q ⋅ y ≤ u ⋅ 1m×1
11×m ⋅ x = 1

11×2 ⋅ y = 1

x ≥ 0
y ≥ 0

(21) 

Assume the optimal solution for linear programs (21) is x∗, y∗. Then we can also obtain the 

coalition utility v(S) from the sum of the products of each element of the payoff matrix and their 

corresponding probabilities4, i.e. 

v(S) = v∗ = u∗ = Q⊙ (x∗ ⋅ y∗T). (22) 

Using the geometric mean return (18) of each stock at both two time periods, we obtain the payoff 

matrix for three individual players A, B, C: 

Table 2.  Payoff matrix 

structured for {𝐴} 
Table 3.  Payoff matrix 

structured for {𝐵} 
Table. 4  Payoff matrix 

structured for {𝐶} 

Strategy P1 P2 Strategy P1 P2 
Strate

gy 
P1 P2 

A1 0.00065 -0.00024 B1 0.00283 0.00080 C1 -0.00125 0.00144 

A2 -0.00037 -0.00088 B2 0.00093 0.00195 C2 -0.00064 0.00275 

A3 -0.00123 -0.00136 B3 -0.00045 0.00195 C3 0.00066 0.00520 

A4 0.00095 0.00025 B4 0.00125 0.00596 C4 0.00494 0.00182 

 

By the CVX optimization toolbox, a modeling system for convex optimization problems on 

MATLAB, we can use the equation (22) to obtain: v(A) = 0.00025, v(B) = 0.00235, v(C) =
0.00320.  

Furthermore, for the payoff matrix of coalitions containing two participants, the payoff for an 

arbitrary strategy at a given period is equal to the sum of that of two individual players. For example, 

the payoff for (A1B1, P1) is equal to the sum of payoffs of (A1, P1) and (B1,P1). After obtaining 

the payoff matrix Q in this way, we can use optimization (22) to get the utilities for two participants' 

coalitions. 

                                                
4 Hadamard product ⊙: If 𝐴 = (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗) are two matrices of the same order, then (𝐴⊙ 𝐵)𝑖𝑗 = 𝑎𝑖𝑗 × 𝑏𝑖𝑗. 
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Table 5.  Payoff matrix 

structured for {𝐴, 𝐵} 
Table 6.  Payoff matrix 

structured for {𝐴, 𝐶} 
Table 7.  Payoff matrix 

structured for {𝐵, 𝐶} 

Strategy P1 P2 Strategy P1 P2 Strategy P1 P2 

A1B1 0.00348 0.00056 A1C1 -0.00060 0.00119 B1C1 0.00157 0.00224 

A1B2 0.00158 0.00170 A1C2 0.00001 0.00250 B1C2 0.00219 0.00355 

A1B3 0.00020 0.00170 A1C3 0.00131 0.00496 B1C3 0.00349 0.00600 

A1B4 0.00190 0.00572 A1C4 0.00559 0.00158 B1C4 0.00777 0.00262 

A2B1 0.00246 -0.00008 A2C1 -0.00162 0.00055 B2C1 -0.00033 0.00338 

A2B2 0.00056 0.00106 A2C2 -0.00101 0.00187 B2C2 0.00029 0.00469 

A2B3 -0.00082 0.00106 A2C3 0.00029 0.00432 B2C3 0.00159 0.00715 

A2B4 0.00088 0.00508 A2C4 0.00457 0.00094 B2C4 0.00587 0.00377 

A3B1 0.00159 -0.00056 A3C1 -0.00249 0.00007 B3C1 -0.00170 0.00338 

A3B2 -0.00031 0.00058 A3C2 -0.00187 0.00139 B3C2 -0.00109 0.00469 

A3B3 -0.00168 0.00058 A3C3 -0.00057 0.00384 B3C3 0.00021 0.00715 

A3B4 0.00001 0.00460 A3C4 0.00371 0.00046 B3C4 0.00449 0.00377 

A4B1 0.00377 0.00105 A4C1 -0.00031 0.00168 B4C1 -0.00001 0.00740 

A4B2 0.00187 0.00219 A4C2 0.00031 0.00299 B4C2 0.00061 0.00871 

A4B3 0.00050 0.00219 A4C3 0.00161 0.00545 B4C3 0.00191 0.01116 

A4B4 0.00219 0.00621 A4C4 0.00589 0.00207 B4C4 0.00619 0.00778 

Hence, we have v({A, B}) = 0.00313, v({A, C}) = 0.00375, v({B, C}) = 0.00656. In the same 

way, the payoff matrix for the grand coalition is given as below: 

Table 8.  Payoff matrix structured for {A, B, C}. 

Strategy P1 P2 Strategy P1 P2 Strategy P1 P2 

A1B1C1  0.00222 0.00199 A2B2C3 0.00122 0.00626 A3B4C1 -0.00124 0.00603 

A1B1C2 0.00284 0.00331 A2B2C4 0.00550 0.00288 A3B4C2 -0.00063 0.00735 

A1B1C3 0.00414 0.00576 A2B3C1 -0.00207 0.00250 A3B4C3 0.00067 0.00980 

A1B1C4 0.00842 0.00238 A2B3C2 -0.00146 0.00381 A3B4C4 0.00495 0.00642 

A1B2C1 0.00032 0.00314 A2B3C3 -0.00015 0.00626 A4B1C1 0.00252 0.00248 

A1B2C2 0.00094 0.00445 A2B3C4 0.00412 0.00289 A4B1C2 0.00313 0.00380 

A1B2C3 0.00224 0.00690 A2B4C1 -0.00038 0.00651 A4B1C3 0.00443 0.00625 

A1B2C4 0.00652 0.00352 A2B4C2 0.00024 0.00783 A4B1C4 0.00871 0.00287 

A1B3C1 -0.00105 0.00314 A2B4C3 0.00154 0.01028 A4B2C1 0.00062 0.00363 

A1B3C2 -0.00044 0.00445 A2B4C4 0.00582 0.00690 A4B2C2 0.00123 0.00494 

A1B3C3 0.00086 0.00690 A3B1C1 0.00034 0.00087 A4B2C3 0.00253 0.00739 

A1B3C4 0.00514 0.00353 A3B1C2 0.00095 0.00219 A4B2C4 0.00681 0.00401 

A1B4C1 0.00064 0.00715 A3B1C3 0.00226 0.00464 A4B3C1 -0.00075 0.00363 

A1B4C2 0.00126 0.00846 A3B1C4 0.00653 0.00126 A4B3C2 -0.00014 0.00494 

A1B4C3 0.00256 0.01092 A3B2C1 -0.00156 0.00202 A4B3C3 0.00116 0.00739 

A1B4C4 0.00684 0.00754 A3B2C2 -0.00095 0.00333 A4B3C4 0.00544 0.00402 

A2B1C1 0.00120 0.00135 A3B2C3 0.00035 0.00578 A4B4C1 0.00094 0.00764 

A2B1C2 0.00182 0.00267 A3B2C4 0.00463 0.00240 A4B4C2 0.00155 0.00895 

A2B1C3 0.00312 0.00512 A3B3C1 -0.00293 0.00202 A4B4C3 0.00285 0.01141 

A2B1C4 0.00740 0.00174 A3B3C2 -0.00232 0.00333 A4B4C4 0.00713 0.00803 

A2B2C1 -0.00070 0.00250 A3B3C3 -0.00102 0.00578    

A2B2C2 -0.00008 0.00381 A3B3C4 0.00326 0.00241    
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The utility value for the grand coalition is v({A, B, C}) = 0.00734. Therefore, the cooperative 

game (N, v) among three participants can be modelled as: 

Table 9.  Characteristic function for cooperative game (𝑁, 𝑣). 

Utility  𝑣(∅) 𝑣(𝐴) 𝑣(𝐵) 𝑣(𝐶) 𝑣({𝐴𝐵}) 𝑣({𝐴𝐶}) 𝑣({𝐵𝐶}) 𝑣(𝑁) 

Value  0 0.00025 0.00235 0.00320 0.00313 0.00375 0.00656 0.00734 

 

According to the equation (4), the Shapley value vector is 

ϕ(v) = (0.00057,0.00302,0.00376)T. (23) 

After the normalization, we can obtain the proportions that belong to three participants are P(A) =
0.07698,  P(B) = 0.41144,  P(C) = 0.51158. Assume the probabilities that the strategies Ai, Bj, Ck 

occur to achieve optimal individual utilities v(A), v(B), v(C) are αi
∗, βj

∗, γk
∗  respectively, where i =

1,⋯ ,4, j = 1,⋯ ,4, k = 1,⋯ ,4. And from the previous results of the optimization (21) for three 

individual player coalitions, we have 

{

α∗ = (0,0,0,1)T

β∗ = (0.69942,0,0,0.30058)T

γ∗ = (0,0,0.40713,0.59287)T
(24) 

Then, we can determine the 12 individual stocks' weights in the entire portfolio by using these 

vectors times the corresponding proportions with respect to the participants, i.e. wi = P(A) ⋅ αi
∗, 

wj = P(B) ⋅ βj
∗, wk = P(C) ⋅ γk

∗ . Therefore, the weights vector of the Shapley value portfolio is 

w = (0,0,0,0.07698,0.28777,0,0,0.12367,0,0,0.20828,0.30330)T. (25) 

Now we perform the risk adjustments to the Shapley value. The risk is measured with variance 

here, and the square root of the variance gives the standard deviation of the portfolio. The average 

return and the variance of the portfolio are given as follow: 

μp = ∑ wiμi
k
i=1

σp2 = ∑ ∑ wiwjσij
k
j=1

k
i=1

(26) 

where wi is the proportion of the portfolio invested in the ith stock, μi is the average return of the 

ith stock, σij is the covariance between the ith and jth stocks (σii denotes the variance of ith stock), 

and k is the number of stocks in the portfolio. For example, the average return, standard deviation and 

Sharpe ratio for the Shapley value portfolio (25) are: μp = 0.00265 , σp = 0.02612 , Sh. r. =

 0.10133.  

To take different participants' risk into consideration, the covariance matrix for each individual 

player's optimal portfolio is built in the analysis. By equation (26), we can calculate the average return 

and standard deviation of the optimal portfolio of player A, B, C according to the weights vector α∗, 
β∗ , and γ∗  respectively. The results are: μA = 0.00058 , σA = 0.03972 ; μB = 0.00235 , σB =
0.02436; μC = 0.00320, σC = 0.03248. The Sharpe ratio vector with respect to the participants is 

Sh. r.= (0.01462,0.09649,0.09839)T. (27) 

After the normalization, we obtain the risk-sharing coefficient vector R =
(0.06979, 0.46059, 0.46963). Since ΔRi = Ri − 1/𝑛, where n is the number of participants, we 

subtract 1/3 for each element in the vector to get 
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ΔR = (−0.26355,0.12726,0.13629)T. (28) 

Through the proposed algorithm 1, the risk modified Shapley value is 

ϕ′(v) = (0.00025,0.00314,0.00395)T. (29) 

By normalization, we can obtain the modified proportion of each participant P(A) =
0.03406,  P(B) = 0.42838,  P(C) = 0.53756. Therefore, the weights vector for the risk modified 

Shapley value portfolio is 

w = (0,0,0,0.03406,0.29962,0,0,0.12876,0,0,0.21886,0.31870)T. (30) 

Moreover, according to Maschler's scheme introduced in algorithm 2, we can calculate the 

nucleolus of the cooperative game shown in Table 9 as follow: 

nucl = (0.00052,0.00310,0.00372)T. (31) 

After the normalization, we obtain P(A) = 0.07016,  P(B) = 0.42268,  P(C) = 0.50715. Apply 

the same calculation as above, the weights vector of the nucleolus portfolio is 

w = (0,0,0,0.07016,0.29563,0,0,0.12705,0,0,0.20648,0.30067)T. (32) 

4. Results and Discussion 

The performance of different portfolio schemes is measured by expected rate of return, standard 

deviation, Sharpe ratio and Sortino ratio. Different from the Sharpe ratio which uses the standard 

deviation, Sortino ratio performs the lower partial standard deviation to differentiate between adverse 

and favourable fluctuations. The interpretation for this is that the upside volatility with positive return 

of the portfolio satisfies the investor's needs and should not be adjusted. It is defined as 

Sor. r.≔
E(Rp) − MAR

√SemiVarp
=

μp
Tx −MAR

√E[(min{0, (rp − μp)
T
x})

2

]

, (33)
 

where MAR is the minimum acceptable return, in most cases it is set equal to the risk free rate Rf, 
and we assume MAR =  0% here. Like the Sharpe ratio, investors tend to prefer the portfolio with a 

higher Sortino ratio.  

For comparison, we also give the market portfolio and the naive diversification portfolio to 

illustrate the effectiveness of the investment schemes based on the cooperative game solution 

concepts. The market portfolio is to invest in assets in proportion to the market's current valuation of 

them, in other words, to build a portfolio weighting 12 stocks by their market capitalization as a 

proportion of the total's, i.e. w =
(0.38435, 0.28210, 0.18429, 0.13716, 0.00215, 0.00225,0.00204,0.00242,0.0009  

1, 0.00088,0.00075,0.00070)T . Naive diversification of the portfolio is achieved by equally 

distributing its weights among 12 stocks using 1/12 , i.e. w =
(0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333,0.08333,0.08333,0.08333,0.08333,0.0  
8333,0.08333) T. So far, we have obtained five investment schemes as shown in Table 10: market 

portfolio, naive diversification portfolio, Shapley value portfolio, nucleolus portfolio, risk modified 

Shapley value portfolio. And the performance of each scheme is presented in Table 11. 
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Table 10.  Portfolio weights of different schemes. 

Player Strategy Symbol 
Portfolio weights 

I II III IV V 

A 

A1 AAPL 0.38435 0.08333 0 0 0 

A2 MSFT 0.28210 0.08333 0 0 0 

A3 AMZN 0.18429 0.08333 0 0 0 

A4 TSLA 0.13716 0.08333 0.07698 0.07016 0.03406 

B 

B1 TRGP 0.00215 0.08333 0.28777 0.29563 0.29962 

B2 CSL 0.00225 0.08333 0 0 0 

B3 STLD 0.00204 0.08333 0 0 0 

B4 EQT 0.00242 0.08333 0.12367 0.12705 0.12876 

C 

C1 ADC 0.00091 0.08333 0 0 0 

C2 EXLS 0.00088 0.08333 0 0 0 

C3 LNTH 0.00075 0.08333 0.20828 0.20648 0.21886 

C4  SM 0.00070 0.08333 0.30330 0.30067 0.31870 

I: Market portfolio, II: Naive diversification portfolio, III: Shapley value portfolio, IV: Nucleolus portfolio, V: Risk 
modified Shapley value portfolio. 

 

Table 11.  Performance of different schemes. 

Portfolio I II III IV V 

Expected return rate -0.00025 0.00118 0.00265 0.00266 0.00274 

Standard deviation 0.02029 0.01747 0.02612 0.02611 0.02660 

Sharpe ratio -0.01213 0.06762 0.10133 0.10170 0.10319 

Sortino ratio -0.01668 0.09241 0.14012 0.14058 0.14274 
I: Market portfolio, II: Naive diversification portfolio, III: Shapley value portfolio, IV: Nucleolus portfolio, V: Risk 

modified Shapley value portfolio. 

 

By comparing the results, we can intuitively observe that the allocation schemes based on the 

cooperative game solution concepts significantly outperform the cases of the market portfolio and the 

naive diversification portfolio. For the risk modified Shapley value portfolio, the Sharpe ratio and 

Sortino ratio of that are 0.10319 and 0.14274, which is an improvement over the results of the original 

Shapley valued-based portfolio. In addition, the Sharpe ratio and the Sortino ratio of the necleolus 

portfolio are 0.10170 and 0.14058, showing that the allocation scheme based on the nucleolus also 

achieves the desired outcome.  

However, although the findings demonstrate an apparent improvement of risk modified Shapley 

value scheme on original Shapley value scheme and a promising application of the nucleolus solution 

concept under the present model, it is not appropriate to compare different solution concepts and draw 

general conclusions based solely on the results of the present case. This is because many solution 

concepts, including the Shapley value and the nucleolus, focus on different aspects of fairness, 

stability or other criteria, and the relative relationships they perform may vary with different specific 

situations. 

Furthermore, the model used in this paper still has some shortcomings, one of which is the 

complexity of the computation. Note that this paper is actually modelling three participants with four 

strategies of each, and that the computational complexity will increase exponentially in scale when 

increasing the number of participants, so it may take longer to perform large-scale calculations (e.g. 

including a sufficient number of sectors as participants and using numerous individual stocks under 

each sector as strategies). On the other hand, the modelling of cooperative game theory applied to 
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portfolio selection problem is limited to static games, while the study of dynamic game processes and 

their corresponding asset management is still lacking. 

5. Conclusions 

In this paper, we further explore the application of cooperative game theory to the optimal portfolio 

selection problem, and list several allocation schemes for portfolio weights based on the cooperative 

game solution concepts. Under a static model of a zero-sum non-cooperative game between investors 

and the market and a cooperative game among investors, we divide the three game participants by the 

market capitalization of the U.S. stock market and use the individual stocks under the corresponding 

index as the available strategies, while the market is divided into two periods of daily stock prices 

before and after the outbreak of the Russia-Ukraine conflict. Our main contribution is to propose a 

risk modified Shapley value based on the Shapley value by redistributing the payoff received within 

the grand coalition according to the return-risk balance of each participant, and the model results 

demonstrate the effectiveness of this improvement. And we show other solution concepts for 

cooperative games can also be used in this model, for example the construction of nucleolus-based 

portfolio has also produced satisfactory outcome in terms of return and risk. 
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