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Abstract: The paper focuses on evaluate the effectiveness of the combined method of LSTM 
models and minimal variation optimized portfolio in achieving promising return. Daily 
adjusted closed prices of 21 stocks in American market are collected. Two distinct portfolios 
are then created and optimized based on their according optimal portfolio weights obtained 
from forecasting results of LSTM models and minimal variation optimization. The 21-day 
portfolio return can then be calculated based on the real-world returns of these stocks. 
Portfolio 1 achieves a 21-day return of 4.3%, and portfolio 2 achieves 0.8%. Returns of both 
portfolios are significantly higher than the S&P500 index return of the same time period, 
which is around -4.8%. It is safe to conclude that LSTM enhanced minimal variation 
optimized portfolios are effective in reaching promising returns even when the market is not 
optimistic. By adopting and modifying the method, investors can expect to gain considerable 
returns in the stock market even in the time period when the general market is not optimistic. 
The research also serves as a replicable example of steps to optimized investing portfolios.  
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1. Introduction 

Portfolio is not a new concept in the financial world. Since the age of Shakespeare, the concept of 
diversification was well-established [1]. Despite the fact that the diversification of services and risks 
is a nature of portfolio selection, it was not until 1952 that the topic was academically elaborated by 
Markowitz [2]. However, after years of development, it is not exaggerated to say that modern 
portfolio theory has brought revolutions to the investment management world, largely thanks to its 
power to achieve the maximum return while maintain the lowest entire risk [3]. 

In the past decade, efforts have been made to continuously improve the portfolio selection. In 
research conducted by DeMiguel and several other researchers, positive effects of statistical 
information of stock prices on constructing the optimal portfolio are observed [4]. The research 
indicates that taking option-implied volatility and skewness into consideration when using models to 
predict future performance can significantly reduce volatility and increase Sharpe ratio. Machine 
learning is also widely used in the field. For instance, the support vector machine (the SVM method) 
has been used in one research to produce forecasting results of stocks [5]. The result is then combined 
with another mean variance model to fit test data to calculate the optimal portfolio. Apart from the 
SVM method, various optimizing methodologies can be used to do similar forecasting. Another 
research proves performance-based regularization (PBR) as the solution to both mean-variance 
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problems and mean-conditional value-at-risk problems are effective (CVaR) [6]. Counterintuitively, 
it is not always the case that a more complex model necessarily performs better than a relatively 
simpler model in forecasting. As illustrated by Ghandar and two other researchers, they in fact 
observe more sophisticated models underperform simpler models in forecasting out-of-sample data 
[7]. Even though a relatively precise model is chosen, there is always the potential risk of overfitting 
when performing forecasting tasks using the model [8]. What is more, the portfolio theory is also 
highly possible to be influenced by domestic government policies, just as illustrated by Wang [9]. 
Despite the versatility of predicting models, LSTM models seem to be considerably successful. As 
illustrated in one research, LSTM models help achieve a 50% increase in annualized return [10]. 
However, there are few research focus on the capability of LSTM models combined with rather 
simple optimizing strategies earning considerable return in shorter period. 

The main purpose of the paper is mainly to evaluate the effectiveness of the combination of long-
short term memory models and minimizing variation portfolio optimization in solving portfolio 
optimizing problems. To achieve the purpose, 11 stocks are chosen separately from 11 industries as 
portfolio 1. For further discussion, another 10 stocks are chosen as portfolio 2. Daily adjusted close 
prices are chosen as the input of LSTM models in the hope to allow the model to grasp the most 
information. After forecasting the expected prices of the 11 stocks, a covariance matrix can be 
constructed accordingly. Finally, the optimizing strategy of achieving minimum portfolio variation 
used to find the optimal portfolio. The whole process would say something about whether LSTM 
forecasting and the minimal variation optimization is a relatively universal and well-performed 
method in real world market. It would also provide validation to the statement regarding the 
relationship between the complexity of a model and its actual performance. What is more, it also 
gives some hints regarding real world stock trading strategies. 

The structure of this paper is as below. Data section will include standards used to filter out 11 
stocks and exact figures. Methods section will mainly introduce the LSTM model and covariance 
matrix. In the result section, two optimal portfolios and their expected returns will be given and 
evaluated. There is also a sub-section of further discussions about the result. Some implications of 
the result will also be introduced in this section. Finally, the last section is a conclusion to the whole 
study and possible future research suggestions. 

2. Data 

The research will only focus on the stocks listed in the American market. Two groups of data are 
selected separately under different standards. According to the global industry classification standard 
(GICS), the market is classified into 11 industries [11]. As illustrated by Fabozzi and two other 
researchers, the less stocks are correlated, the better the portfolio expected return will be [12]. From 
this start point, 11 stocks are chosen respectively from 11 different industries. The stocks filtering 
process for the first group of data is completed following steps below. 

Daily adjusted closed prices of stocks in 11 industries from 01/01/1990 to 06/16/2023 on Yahoo 
Finance are collected with the help of the Pandas package. A sorted list is produced for each industry, 
ranking the according stocks from the highest Sharpe ratio to the lowest. A second factor of the length 
of data set is taken into consideration. As a matter of fact, some stocks are listed on the Nasdaq later 
than some other stocks, leading to the potential problem of lacking sufficient data to train the model. 
To avoid such scenario, stocks that are in the top 5 list of each industry but have significantly shorter 
listing span are ruled out. 

The portfolio of Warren Buffett is selected as the base of the second group of data as counterpart 
group. By analyzing the percentage of each stock in his portfolio, top 10 stocks are selected, which 
already make up of over 90% of Buffett’s total portfolio [13]. 
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A statistical analysis was performed to all stocks used in the research, and the results are presented 
in Table 1 sorted by the stock code from A to Z. 

Table 1: Statistical analysis of 21 stocks. 

Stock Code Mean Standard Deviation Skewness Kurtosis 
AAPL 17.29 37.57 2.81 7.13 
ATVI 21.20 26.93 1.32 0.34 
AXP 31.61 40.56 1.75 2.70 
BAC 12.31 11.62 0.81 -0.43 

BNTX 136.47 81.68 0.91 0.76 
CHRD 30.25 38.01 1.82 2.13 
CVX 25.95 36.55 1.70 2.52 
HPQ 5.96 7.51 1.59 2.47 
KHC 43.37 14.49 0.37 -1.17 
KO 12.06 15.45 1.41 1.26 

LAC 6.81 7.85 1.87 2.53 
MA 127.91 123.65 0.85 -0.81 

MCO 77.62 95.14 1.65 1.65 
MNST 9.03 14.34 1.59 1.34 
NFE 27.67 13.18 0.143 -1.25 

NFLX 124.83 169.13 1.355 0.64 
NSA 28.00 13.56 0.77 -0.30 
OXY 24.05 24.15 0.66 -1.23 
SHOP 42.36 44.93 1.18 0.16 
TDG 214.06 218.57 0.97 -0.37 
TSLA 63.13 96.69 1.66 1.38 

 
For data of each stock, 80% of the total data is selected as the train group, 10% of the total data is 

selected as the validation group, and the final 10% is the test data. Individua LSTM model is trained 
based on the train data. Then, the optimal model is fitted into the validation group to check whether 
the model is effective to do forecasts. Finally, the model was fitted to the test group to make the next 
21-day forecasts. 

3. Method 

3.1. The Ex Ante Sharpe Ratio 

Sharpe Ratio is a widely used tool in the financial world. It reveals the ability of a financial asset 
retaining extra benefit given a certain risk rate. Sharpe illustrated the idea of the Ex Ante Sharpe Ratio 
thoroughly [14]. The equation for it is shown below. 

𝑆	 = 	
𝑅! − 𝑅"
𝜎!

 
(1) 

In the equation above, 𝑅! stands for the return of a given stock F, while 𝑅" stands for the return 
of a given benchmark financial asset B. 𝑅! − 𝑅".stands for the standard deviation of the differential 
return 𝜎!.  
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In the particular research, the Ex Ante Sharpe Ratio is mostly used in the data section. 𝑅! is the 
return of any given stock in one of the 11 industries. 𝑅", the return of a benchmark financial assets, 
or risk-free rate. 

3.2. Long Short-Term Memory 

The Long Short-Term Memory (LSTM) was first introduced by Hochreiter and Schmidhuber in 1997 
[15]. The innovative method concurs the obstacle facing by traditional RNN network capturing long-
term dependencies in data and manages to find an equilibrium between long-term historical data and 
new data. The LSTM used in the research can be mathematically expressed as below. 

𝐹# = 𝜎(𝑊$[𝑋# , 𝐻#%&] + 𝑏$1 
(2) 

𝐼# = 𝑟𝑒𝑙𝑢(𝑊'[𝑋# , 𝐻#%&] + 𝑏') 
(3) 

𝐶#: = tanh	(𝑊([𝑋# , 𝐻#%&] + 𝑏() 
(4) 

𝐶# = 𝐹# ∗ 𝐶#%& + 𝐼# ∗ 𝐶#:  (5) 

𝑂# = 𝑙𝑖𝑛𝑒𝑎𝑟(𝑊)[𝐻# , 𝐶#] + 𝑏)) 
(6) 

𝐻# = 𝑂#tanh	(𝐶#) 
(7) 

Equation 2 is the mathematical expression for the forget gate of LSTM. Equation 3 is the 
mathematical expression for the input gate. Equation 4 represents the candidate cell state. Equation 5 
represents the new cell state. Equation 6 is the mathematical expression for the output gate. Equation 
7 represents the hidden state. 𝜎, 𝑟𝑒𝑙𝑢, 𝑡𝑎𝑛ℎ, 𝑙𝑖𝑛𝑒𝑎𝑟 are 4 different activation functions used in LSTM. 
𝑊$ ,𝑊' ,𝑊( ,𝑊)represent the weight matrix for the according gate. 

3.3. Minimal Variation Optimization 

The minimal variation optimization is a technique designed to find the optimal weight for a portfolio 
achieving the minimal variation using covariance matrix. Denote 𝑤 = [𝑤&, 𝑤*, … , 𝑤+] as a vector of 
weights representing the proportion of each asset in the portfolio. The portfolio expected return is 
denoted as 𝐸(𝑅) = 𝑤. 𝑇	@	𝜇, and 𝜇 = [𝜇&,	𝜇*, … , 𝜇-] represents a vector of expected returns for each 
asset. The risk of the portfolio is denoted as 𝜎* = 𝑤. 𝑇	@	𝜎	@	𝑤, where 𝜎 represents a covariance 
matrix of the stock returns. The Markowitz portfolio optimization problem can then therefore be 
denoted as below. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:	𝜎* (8) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜: 𝑤. 𝑇	@	1 = 1,𝑤 ≥ 0 (9) 

This formulation seeks to minimize the variance of the portfolio subject to the constraints that the 
weights sum to 1 and are non-negative. The optimal weights obtained from solving this optimization 
problem will provide the portfolio with the lowest risk for a given set of assets. 
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4. Result 

4.1. Portfolio 1 

The LSTM successfully capture the changes in the price of stocks chosen. Train group, validation 
group, and the test group are selected as mentioned in the data section. The individual LSTM model 
is evaluated. The results are shown in Table 2. 

Table 2: LSTM evaluation of portfolio 1. 

 MSE RMSE MAE 
BNTX 151.95 12.33 11.82 
CHRD 20.91 4.57 3.79 
LAC 0.64 0.80 0.58 
MSE 44.88 6.70 5.43 

MNST 58.49 7.65 7.25 
NFE 81.48 9.03 8.94 

NFLX 3005.98 54.83 50.20 
NSA 66.69 8.17 7.99 

SHOP 16.88 4.11 3.82 
TDG 2918.87 54.03 50.68 
TSLA 3788.57 61.55 58.53 

The optimal LSTM model for each stock is chosen under the method of adaptive moment 
estimation (Adam) with a learning rate of 0.0001, and the loss function for the method is the mean 
squared error. The process was repeated for 30 times. Then the optimal LSTM model is fitted to the 
last 21 entries in the test group one for each time. This process results in a forecasting result of 21 
days. Based on the forecasting result, a covariance matrix is constructed. The optimization objective 
is to minimize risks. The optimal weight for each stock is shown in Table 3. 

Table 3: Optimal weight of portfolio 1 

BNTX CHRD LAC MA MNST NFE 
7.74% 11.41% 10.85% 13.59% 17.78% 12.19% 
NFLX NSA SHOP TDG TSLA  

0 0% 11.78% 7.36% 7.31%  

Based on the weight optimized by LSTM forecasting and the real-world daily return of 11 stocks, 
the portfolio return can be calculated as shown in Figure 1. 
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Figure 1: Portfolio 1 return vs S&P500 index return. 

The portfolio 1 return and the S&P500 index return are first synchronous, showing downward 
trending. However, after the 8th day, two returns in question move toward completely opposite 
directions.  The portfolio 1 return turns over to overall-all increasing, while the S&P500 index remain 
the decreasing trend. In the 20th day, the portfolio 1 achieves a return of 4.29%. On contrary, the 
return of S&P500 index is -4.8%. 

Overall speaking, the result of portfolio 1 optimization is quite promising. In a time period of 21 
trading days, the optimized portfolio clearly beats the market. It certainly proves the method in this 
research is effective: stocks filtering based on the Sharpe ratio and the data length, LSTM forecasting, 
and portfolio construction using forecasting result of LSTM. 

4.2. Portfolio 2 and Further Discussion 

The same process is performed to the counterpart. The individual LSTM model is evaluated. The 
result is shown in Table 4. 

Table 4: LSTM evaluation of portfolio 2. 

 MSE RMSE MAE 
AAPL 7189.92 84.79 82.64 
ATVI 3.17 1.78 1.40 
AXP 1446.93 38.04 32.12 
BAC 1.15 1.07 0.94 
CVX 481.48 21.94 20.06 
HPQ 32.31 5.68 5.20 
KHC 1.21 1.10 0.93 
KO 73.51 8.57 8.05 

MCO 679.09 26.06 24.76 
OXY 0.52 0.72 0.61 

The optimal weight for each stock is shown in Table 5.  
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Table 5: Optimal weight of portfolio 2. 

AAPL ATVI AXP BAC CVX 
0 8.11% 0 29.72% 0 

HPQ KHC KO MCO OXY 
0 20.67% 0 2.23% 39.25% 

Based on the weight optimized by LSTM forecasting and the real-world daily return of 10 stocks, 
the portfolio return can be calculated as shown in Figure 2. 

  
Figure 2: Portfolio 2 return vs S&P500 index return. 

The portfolio 2 return and the S&P500 index return are also first synchronous in the term of 
moving trend. Similar to what happened in portfolio 1 analysis, starting from the 8th day, the portfolio 
2 return begins to move in the opposite direction of S&P500 index return. In the 20th day, the portfolio 
2 can achieve a return of 0.82%, while the S&P500 index return is -4.8%. However, it is noteworthy 
that the portfolio 2 return outperforms the market all the time. 

The result of portfolio 2 is not optimistic compared to the result of portfolio 1 as it achieves a 
lower portfolio return. Various reasons may lead to the gap between the result of portfolio 1 and that 
of portfolio 2. One direct reason is the robustness of LSTM models. Despite by counts there are more 
accurate models in portfolio 2 than in portfolio 1, others show dramatic inaccuracy as observed in the 
model for AAPL. What is more, there is also a trend in both portfolio and portfolio 2 that models for 
stocks with more data actually are less accurate. Increasing learning rate of Adam or repeating the 
optimization process for more times may results in more robust models. 

Also, the difference in two results also reveals the high volatility of using machine learning to 
optimize portfolios. Not only the reasons mentioned above may explain the gap, but also the 
activation function may also lead to different level of accuracy. Besides, different stocks filtering 
strategies may also lead to different original stocks, and some of these stocks must be more suitable 
than others for machine learning. 

5. Conclusion 

The research paper mainly aims to test the effectiveness of the combined method of LSTM forecasting 
and minimal variation optimizations. LSTM models are constructed to provide forecasting results of 
the price of 21 stocks in the next 21 days. Based on the forecasting result, covariance matrixes are 
constructed, and the minimal variance optimization is performed to find the optimal weight for each 
portfolio. Finally, real-world returns of these 21 stocks are used to calculate the portfolio return for 
the time period of next 21 days. Portfolio 1 achieves a return of 4.29%, and portfolio 2 achieves a 
return of 0.82%. By contrast, the S&P500 index return for the same time period is around -4.8%. The 
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result clearly proves that the LSTM enhanced minimal variation optimization is effective in achieve 
promising returns even during the time when the general market is not optimistic. The research serves 
as a replicable case for real-world investors to construct their own portfolios. 

Overall, the research paper successfully demonstrates the effectiveness of the LSTM enhanced 
minimal variation optimization in real-world investing cases. However, there are also some aspects 
that can be further improved. First of all, some of the LSTM models used in the paper are less accurate 
than others. Secondly, the effectiveness of such method in longer investing time period remains 
unproved. Finally, some other possible combined methods like LSTM enhanced maximal return 
optimization are not included in the paper as the initiative of the research is to obtain a promising 
return under reasonable risks. It is not necessarily the case that maximizing the return will lead to a 
significant increase in portfolio risks, which means that even under the objective mentioned above, 
the LSTM enhanced minimal variation optimization may still not be the optimal solution. Future 
studies may focus on three points listed above to improve the method. 
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