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Abstract: The modeling of high-frequency volatility is of utmost importance in 

comprehending market dynamics and the characteristics of risk. The adoption of high-

frequency volatility modeling in the agricultural sector has the potential to enhance risk 

management for food production enterprises through the utilization of hedging strategies to 

mitigate the impact of food price changes. The GARCH (Generalized Autoregressive 

Conditional Heteroskedasticity) class of models is well-suited for the analysis and prediction 

of volatility in financial time series. These models effectively capture the highest level of 

volatility observed in the time series data. Therefore, this research utilizes one-minute trade 

data of the Wind Agriculture Index (886045.WI) to examine the efficacy and predictability 

of several GARCH class volatility models. When it comes to fitting the data within the sample, 

the TGARCH model demonstrates superior performance compared to both the GARCH and 

EGARCH models. The fluctuations in the price changes of the Wind Agriculture Index 

exhibit characteristics of time variability and clustering, which can be attributed to the 

relatively low barriers for entry and exit in the agricultural planting sector. Simultaneously, 

within the agricultural market, an imbalance is observed whereby the influence of positive 

information on price volatility surpasses that of negative information. 

Keywords: high-frequency volatility modeling, GARCH-type models, agricultural products 

market 

1. Introduction 

The modeling of high-frequency volatility plays a crucial role in comprehending market dynamics 

and the characteristics of risk. These phenomena have substantial ramifications across multiple 

financial domains, encompassing the valuation of financial derivatives, the mitigation of risk, and the 

management of investment portfolios. The primary objective of research on high-frequency volatility 

modeling is to improve the effectiveness of risk management and asset pricing methodologies in 

financial markets, consequently promoting economic progress. 

The agricultural industry demonstrates notable resilience as a result of its relatively steady 

customer demand across industrial cycles and inherent stability. Furthermore, the industry is subject 

to standardized national rules, which ultimately leads to the production of data of superior quality. In 

the agricultural sector, the implementation of high-frequency volatility models facilitates more 
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efficient risk management by hedging against food price fluctuations and minimizing potential 

business losses. 

For policymakers, high-frequency volatility modeling offer precious insights into fluctuations in 

food prices, thereby facilitating better macroeconomic regulation. For example, they can anticipate 

inflation rates and establish respective monetary policies. Likewise, for investors, the intelligence 

gleaned from high-frequency volatility models yields valuable information about stock price shifts in 

food production firms, assisting them in gaining a deeper understanding of the market and making 

prudent investment decisions. 

Amongst the most renowned models that encapsulate time-varying volatility is the Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) model [1]. A well-established 

understanding is that financial fluctuations typically display extended memory characteristics. 

However, conventional volatility models noticeably fall short of capturing this unique feature. To 

address this deficiency, financial scholars have integrally introduced a volatility component into the 

mean equation, thus primarily instigating the GARCH-M model [2]. Concurrently, the GJR-GARCH 

model emerged with its incorporation of asymmetric effects, positioning it as notably suitable for 

financial return series [3]. 

GARCH models and implied volatility possess equivalent predictive efficiency, that is, they have 

equal information processing capabilities. However, under certain conditions, such as when the 

market processes information promptly or when there are abnormal supply and demand pressures, 

implied volatility may provide a more effective prediction [4]. The use of high-frequency data for the 

first time to evaluate and predict the price volatility of agricultural commodity futures is an innovative 

research method. This approach has significantly improved forecasting accuracy, providing valuable 

tools for investors and decision-makers [5]. An empirical study was conducted on the capability of 

ARIMA and GARCH models in predicting agricultural prices. It was found that both models are 

statistical methods used to predict future data points in time series based on past information. ARIMA 

tends to more effectively capture steady-state characteristics, while the GARCH model accurately 

predicts volatility [6]. 

Compared to standalone GARCH class models and LSTM, the hybrid method based on various 

Granger causality tests (GARCH class models, such as GARCH, EGARCH, TGARCH, GJR-

GARCH) and Long Short-term Memory neural networks (LSTM, a deep learning method widely 

used for time series forecasting) shows notable improvement in predictive accuracy [7]. Similarly, 

the hybrid method combining GARCH class models and LSTM enhances accuracy in predicting 

garlic prices, playing a crucial role in agricultural decision-making and policy formulation [8]. 

In summary, the research examined underscores the efficacy of GARCH-type models in accurately 

representing high-frequency data and volatility. The author utilizes stock data pertaining to the 

agricultural industry in China for the purpose of constructing a model and making predictions 

regarding volatility. The research methodology utilized and the findings of this study make a valuable 

contribution to the comprehension of investment and industrial risk assessment, and provide 

meaningful suggestions for future research endeavors. 

2. Methodology 

This study has selected the Wind Agricultural Index as a representative indicator for the price 

volatility in the agricultural sector. The selection is based on the premise that the Wind Agricultural 

Index is a robust reflection of the mean price volatility of all stocks in this sector. The Index 

(886045.WI), derived from the Wind China Industry Index, is calculated based on the free-market 

capitalization of 69 stocks, which include prominent agricultural stocks such as Muyuan, Wen's, and 

Tongwei. 
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The one-minute trading data of these stocks have been gathered on a daily basis for a substantial 

period of years, from October 26, 2021, to June 30, 2023. This vast pool of sample data has been 

transformed into volatility information for further analysis purposes.  

3. Results and Analysis 

To this end, we compute the logarithmic returns of the Wind Agricultural Index as rt= lnpt − lnpt−1, 

where pt signifies the price of the Wind Agricultural Index at time t. Subsequently, a descriptive 

statistical analysis on the rt time series is executed. As presented in Figure 1, the kurtosis of this time 

series is found to be 67.82768, significantly exceeding the value of 3. This suggests that the data is 

leptokurtic, with a sharper peak relative to a normal distribution. The calculated skewness value is -

0.762926, which is less than 0, denoting a left skew in the series. The P-value of the Jarque-Bera (JB) 

statistic falls below the critical value of 0.05, thereby confirming that the rt time series does not 

conform to a standard Gaussian distribution. 

 

Figure 1: Histogram and Descriptive Statistics 

Subsequently, the implementation of an Augmented Dickey-Fuller (ADF) unit root test is carried 

out. As presented in Table 1, with the p-value falling below the 0.05 threshold, we effectively reject 

the null hypothesis. This infers the non-existence of a unit root in the time series, thereby verifying 

the stationary nature of the series. 

Table 1: unit root test 

 t-statistic Prob. 

Augmented Dickey-Fuller test statistic -298.5672 0.0001 

Test critical values 1% level -3.958126  

 5% level -3.409847  

10% level -3.126629  

 

Then, the GARCH model is selected and estimated. Model selection and estimation is the core 

problem of high-frequency volatility modeling and prediction. Models commonly used today include 

ARCH, GARCH, TGARCH, and EGARCH.  

3.1. GARCH model 

Initially, we assessed the presence of the Autoregressive Conditional Heteroskedasticity (ARCH) 

effect, denoting heteroskedasticity. As presented in Table 2, all of the p-values are less than 0.05, 

leading to a rejection of the null hypothesis and signifying that ARCH effects and heteroskedasticity 

are prevalent within the time series. Such conditions satisfied the prerequisites for establishing both 

the ARCH and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models. 
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Table 2: Autoregressive Conditional Heteroskedasticity (ARCH) Effect 

F-statistic 138.7415 Prob. F(5,98967) 

Prob. Chi-Square(5) 

0.0000 

Obs*R-squared 688.9207 0.0000 

 

We proceeded to establish an Autoregressive Conditional Heteroskedasticity (ARCH) model. As 

highlighted in Table 3, all of the p-values fall below the 0.05 threshold, thereby confirming the 

adequacy of the ARCH model. The Akaike Information Criterion (AIC) stands at -11.35796, the 

Schwarz Criterion (SC) at -11.35702, the Hannan-Quinn Criterion (HQC) at -11.35749, and the Log 

Likelihood (LI) at 562087.7. 

Table 3: Autoregressive Conditional Heteroskedasticity (ARCH) model 

Variable Coefficient Std. Error z-Statistic Prob. 

C -1.68E-05 1.57E-06 -10.68926 0.0000 

Variable Equation 

C 4.71E-07 3.65E-10 1290.617 0.0000 

RESID(-1)^2 0.203820 0.001691 120.5290 0.0000 

RESID(-2)^2 0.062985 0.002233 28.20745 0.0000 

RESID(-3)^2 0.053049 0.002234 23.74805 0.0000 

RESID(-4)^2 0.048126 0.002242 42.46549 0.0000 

RESID(-5)^2 0.077761 0.001846 42.11676 0.0000 

R-squared 

Adjusted R-squared 

S.E. of regression 

Sum squared resid 

Log likelihood 

Durbin-Watson statistic 

-0.000272 Mean dependent var -1.92E-06 

-0.000272 S.D. dependent var 0.000899 

0.000899 Akaike info criterion -11.35769 

0.080068 Schwarz criterion -11.35702 

562087.7 Hannan-Quinn criterion -11.35749 

1.893379   

 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model was employed. 

As outlined in Table 4, all p-values fall under 0.05, endorsing the applicability of the GARCH model. 

The noted Akaike Information Criterion (AIC) is -11.36936, the Schwartz Criterion (SC) stands at -

11.36925, the Hannan-Quinn Criterion (HQC) is measured at -11.36952, and the Log Likelihood (LI) 

is 562675.7. 

Table 4: Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model 

Variable Coefficient Std. Error z-Statistic Prob. 

C -1.64E-05 1.77E-06 -9.226868 0.0000 

Variable Equation 

C 7.27E-08 6.10E-10 119.1101 0.0000 

RESID(-1)^2 0.071775 0.000810 88.58360 0.0000 

GARCH(-1) 0.835696 0.001321 632.8288 0.0000 

R-squared 

Adjusted R-squared 

S.E. of regression 

Sum squared resid 

Log likelihood 

Durbin-Watson statistic 

-0.000258 Mean dependent var -1.92E-06 

-0.000258 S.D. dependent var 0.000899 

0.000899 Akaike info criterion -11.36963 

0.080066 Schwarz criterion -11.36925 

562675.7 Hannan-Quinn criterion -11.36952 

1.893406   

 

A GARCH model was established to analyze the price volatility of the Wind Agricultural Index, 

and the computation results are shown in Table 4. In the estimation, C is the constant, RESID(-1)^2 

Proceedings of the 3rd International Conference on Business and Policy Studies
DOI: 10.54254/2754-1169/71/20241434

88



is the coefficient of the ARCH term, and GARCH(-1) is the coefficient of the GARCH term. 

According to Table 4, all the coefficients are statistically significant at the 5% level, indicating that 

the price volatility of the Wind Agricultural Index exhibits significant ARCH and GARCH effects. 

This suggests that the price variation of the Wind Agricultural Index shows time-varying and 

clustering characteristics, and that external environments and prior price changes impact the current 

price of the agricultural index. The estimated coefficient of price volatility for the agricultural index, 

RESID(-1)^2+GARCH(-1) = 0.907471, being less than 1, implies that after a market shock, the price 

volatility risk of the agricultural index decreases over time. The clustering feature of the price 

volatility of the Wind Agricultural Index is due to the relatively low entry and exit barriers in 

agricultural planting. Rising prices incentivize farmers to compete in planting crops, while falling 

prices discourage cultivation. The lack of communication and cooperation among various planters 

leads to a strong "chasing up and knocking down" vibe in the agricultural market. 

3.2. Analysis of Asymmetric Model Results 

A Threshold Generalized Autoregressive Conditional Heteroskedasticity (TGARCH) model was 

constructed, as depicted in Table 5. All p-values lie under 0.05, thus validating the suitability of the 

TGARCH model. The said model’s Akaike Information Criterion (AIC) is -11.37130, the Schwartz 

Criterion (SC) stands at -11.37082, the Hannan-Quinn Criterion (HQC) is measured at -11.37116, 

and the Log Likelihood (LI) is 562759.4. 

Table 5: Threshold Generalized Autoregressive Conditional Heteroskedasticity (TGARCH) model 

Variable Coefficient Std. Error z-Statistic Prob. 

C -1.03E-05 2.38E-06 4.315632 0.0000 

Variable Equation 

C 7.30E-08 5.75E-10 127.0065 0.0000 

RESID(-1)^2 0.091290 0.001144 79.79503 0.0000 

RESID(-1)^2*(RESID(-1)<0) -0.037283 0.001343 27.76668 0.0000 

GARCH(-1) 0.833917 0.001249 667.7253 0.0000 

R-squared 

Adjusted R-squared 

S.E. of regression 

Sum squared resid 

Log likelihood 

Durbin-Watson statistic 

-0.000086 Mean dependent var -1.92E-06 

-0.000086 S.D. dependent var 0.000899 

0.000899 Akaike info criterion -11.37130 

0.080053 Schwarz criterion -11.37082 

562759.4 Hannan-Quinn criterion -11.37116 

1.893732   

 

An Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model 

was built, as illustrated in Table 6. All p-values fall under 0.05, thus attesting to the effectiveness of 

the EGARCH model. The model’s Akaike Information Criterion (AIC) is -11.33295, the Schwartz 

Criterion (SC) stands at -11.33247, the Hannan-Quinn Criterion (HQC) is measured at -11.33280, 

and the Log Likelihood (LI) is 560861.1. 

Table 6: Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model 

Variable Coefficient Std. Error z-Statistic Prob. 

C -4.68E-05 1.76E-06 -26.55980 0.0000 

Variable Equation 

C -1.527584 0.00804 -190.004 0.0000 

ABS(RESID(-1)/@SQRT(GARCH(-1))) 0.150570 0.00091 166.089 0.0000 

RESID(-1)/@SQRT(GARCH(-1)) 0.047743 0.00067 70.7942 0.0000 
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LOG(GARCH(-1)) 0.898830 0.00055 1642.72 0.0000 

R-squared 

Adjusted R-squared 

S.E. of regression 

Sum squared resid 

Log likelihood 

Durbin-Watson statistic 

-0.002496 Mean dependent var -1.92E-06 

-0.002496 S.D. dependent var 0.000899 

0.000900 Akaike info criterion -11.33295 

0.080246 Schwarz criterion -11.33247 

560861.1 Hannan-Quinn criterion -11.33280 

1.889179   

 

A TGARCH model and EGARCH model were established to analyze the price volatility of the 

Wind Agricultural Index, with the results illustrated in Table 6 and Table 7 respectively. In Table 6, 

the coefficient for RESID(-1)^2*(RESID(-1)<0) and the coefficient for RESID (-

1)/@SQRT(GARCH(-1)) in Table 7 are used to measure the asymmetric shock of external 

information on the price volatility of the agricultural index. Upon a comprehensive evaluation of the 

results in Table 6 and Table 7, it can be seen from the TGARCH model that the asymmetry coefficient 

of the Wind Agricultural Index is -0.037283, significantly negative at the 5% level. From the 

EGARCH model, the asymmetry coefficient of the Wind Agricultural Index is 0.047743 which is 

significantly positive at the 5% level. This indicates that in the agricultural market, the impact that 

positive news (bullish information) has on price fluctuation surpasses that of negative news (bearish 

information). In an instance where the market anticipates a future shortage in supply (positive news), 

prices are likely to surge to reflect this expectation. Conversely, if an oversupply is anticipated in the 

future (negative news), consumers might withhold purchases in anticipation of dropping prices, while 

producers might be unable to reduce production instantly to prevent such price decline. This delay 

could potentially result in a stronger market reaction to positive news compared to negative news. 

3.3. Analysis of Forecast 

RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and MAPE (Mean Absolute 

Percentage Error) are commonly used statistical measures to quantify the error of a prediction model. 

RMSE awards relatively more weight to larger errors because the differences are squared. In contrast, 

MAE does not necessarily penalize large errors, especially if they are occasional. MAPE focuses on 

the errors as a percentage of the observed value, making it a relative measure. This property makes it 

useful for comparing forecasts of different scales or presenting forecast performance in a 

straightforward, easily interpretable manner. As illustrated in Table 7, the TGARCH model forecast 

demonstrates the lowest values in terms of RMSE, MAE, and MAPE. This revelation suggests that 

the TGARCH model has a lower prediction error and a higher degree of prediction accuracy. 

Table 7: Forecast Results 

 Root Mean Square Error 

(RMSE) 

Mean Absolute Error  

(MAE) 

Mean Absolute Percentage Error 

(MAPE) 

GARCH 0.000899 0.000547 104.8285 

TGARCH 0.000899 0.000547 102.2579 

EGARCH 0.000900 0.000547 122.1828 

 

To summarize, it was found that GARCH-type models can accurately model and predict the price 

volatility of the Wind Agriculture Index. However, the TGARCH model displays lower values for 

the information criteria AIC, SC, and HQC, coupled with a higher log-likelihood value. Furthermore, 

Table 6: (continued). 
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the TGARCH model also showcases the lowest values for prediction metrics RMSE, MAE, and 

MAPE, suggesting that the TGARCH model is superior. 

4. Conclusion 

In the analysis, the author chose the Wind Agriculture Index and discovered that GARCH-type 

models can effectively model and predict the price volatility of the index. However, the TGARCH 

model exhibits lower values for the information criteria AIC, SC, and HQC, and a higher value for 

log likelihood, indicating superior predictive power and modelling performance. This is indicative of 

the TGARCH model being superior. It can be noted that asymmetry exists in the agricultural market 

where positive information (news of future supply shortage) has a larger impact on price volatility as 

compared to negative information (news of future oversupply). When the market anticipates future 

supply shortage (positive news), prices could potentially rise reflecting these anticipations. In contrast, 

if the market anticipates future supply surplus (negative news), consumers may wait for prices to fall, 

and producers are usually unable to immediately cut production to avoid falling prices. This resultant 

delay could cause the impact of positive news to be stronger than negative news. 

Simultaneously, the Wind Agriculture Index shows time-varying and clustering features in price 

changes due to the fact that the threshold for entering and exiting the agricultural planting industry is 

relatively low. When prices rise, farmers are encouraged to plant crops competitively, and when 

prices fall, it triggers farmers to competitively avoid planting crops. The lack of communication and 

collaboration between various plant growers leads to a strong trend of "chasing the highs and killing 

the lows" in the agricultural market. 

Drawing upon the aforementioned research findings, the paper puts forth the subsequent 

recommendations: The aim is to develop a comprehensive observation and early warning platform 

that can effectively predict and provide timely information on agricultural commodity prices. Given 

the clustering and asymmetrical nature of changes in agricultural product prices, it is imperative to 

promptly gather and disseminate information pertaining to these values. Regularly providing updates 

on planting scale, production and marketing status, and pricing trends will assist plant growers in 

making informed decisions regarding their planting scales and developing sensible production and 

marketing plans. 
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