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Abstract: The emergence of financial derivatives complicates traditional financial products 

and increases financial market volatility. Individuals and financial institutions are both 

exposed to more complex and uncontrollable risks in this environment. Because of the risk's 

uncertainty, we must use reasonable methods to predict and estimate it in order to achieve the 

goal of risk control. This paper discusses three new VaR (Value at Risk) models that have 

emerged in recent years based on the ARCH family model using a method of literature 

review. The ARMA-EGARCH model, for example, combines the ARMA model to describe 

constant variance time series and the EGARCH model to describe heteroscedasticity 

phenomena, and theoretically can better describe the fluctuations of financial time series and 

obtain an independent time series with the same distribution. The sequence is processed using 

extreme value theory, which is the ARMA-EGARCH-GPPD model, in conjunction with the 

GPD model. We used the ARMA-EGARCH-semi-parametric method in conjunction with the 

historical simulation method and the parameter method to avoid cumbersome quantile 

calculation because the model algorithm is more complex. The generalized EWMA risk value 

prediction model has more advantages for financial data with large peaks. 

Keywords: VaR, ARCH series model, ARMA-EGARCH-GPPD model, generalized-EWMA 

model 

1. Introduction  

In the last century, there have been unprecedented developments in international financial markets, 

which are now beginning to take place. The emergence of financial derivatives is one of the most 

significant changes in comparison to previous financial markets. Derivatives have increased the 

complexity of traditional financial products, resulting in increased volatility in financial markets and 

an unstoppable trend toward globalization. Under such conditions, both individuals and financial 

institutions face more complex and uncontrollable risks, and the financial market's whims and whims 

will have an impact on human economic life worldwide. We must proactively manage uncontrollable 

and uncertain risks rather than simply avoiding them or doing nothing at all. Only through the use of 

proper methods and active control can investors and financial institutions reduce losses and grow 

more steadily. Value at risk is a risk index, statistical data, and measurement method [1]. VAR enables 

people to intuitively understand their maximum loss value and probability in the future, allowing 

them to address and manage risks. Risk is quantified by the value at risk. It is simply the proportion 

of assets that are at risk when market volatility is normal. This is the risky value. 
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VaR is a relatively new approach of gauging financial market risk, yet it has become a research 

hotspot. G-30, an international private research company, originally proposed regulating risk via VaR 

in 1993 [2]. VaR prediction methods include historical simulation (HS), moving average (MA), and 

exponentially weighted moving average (EWMA) (ARCH model). Because the ARCH model depicts 

the fluctuation clustering of financial time series, people have promoted it, forming a general ARCH 

model and ARCH series model. These models have different advantages in characterizing financial 

time series, so scholars will choose different models according to the different needs of time series 

when estimating VaR, so a large number of VaR models with different manifestations. Ning Tang 

proposed the ARMA-EGARCH-GPPD model in 2016 [2]. Aerambamoorthy Thavaneswaran, Alex 

Paseka, and Julieta Frank suggested a data-driven generalized EWMA model to reduce the asymptotic 

variance of the volatility estimator [3]. Hemant Kumar Badaye and Jason Narsoo proposed the MC-

GARCH-Copula model, which can predict VaR and ES for the next 1 min [4]. Tianyi Wang et al. 

introduced the GARCH-RSRK model, which determines return, realized volatility, realized 

skewness, and realized kurtosis [5]. 

Starting from the theoretical foundation of value-at-risk, this paper introduces several value-at-

risk models in recent years, and compares the model's shortcomings and advantages using the method 

of comparison, in order to look into the future development direction of value-at-risk theory. 

2. Value at Risk Theory 

VaR is a statistical estimate of an asset's loss in a given risk range caused by normal market 

fluctuations during a holding period. VaR can be defined by financial institutions as the maximum 

loss of financial assets with a given probability over a given time period. In the case of normal market 

fluctuations, VaR is defined as the maximum loss that is expected to occur in the value of a specific 

financial asset or security portfolio within a specific period in the future under a given probability 

level (confidence level). For example, if a company has a $100,000 value at risk and a 95% confidence 

level, there is a 5% chance that each of the company's $1 million assets will suffer a maximum loss 

of $100,000 in the next 24 hours. People can make decisions based on predicted data as well as their 

own risk preference or aversion.  

Two parameters must be determined to calculate value at risk: asset holding period and result 

confidence. Confidence level is loss probability interval. The likelihood increases the risk value. 

Higher confidence means the loss is less likely to surpass the projected value at risk. There is no hard 

and fast rule for determining whether a higher or lower confidence level is preferable. Because a high 

confidence level may overestimate the risk, a low confidence level may underestimate the risk. In 

general, a confidence level of 90% to 99% is appropriate. The holding period can be set to be a day, 

a week, a month, or a year, among other options. If the holding period is excessively long, an 

assumption should be made about the data, namely that the sample data are independent and 

identically distributed. If the data is relatively large, the holding period could be as short as one hour 

or as long as one minute. As a result, the holding period should be chosen based on the characteristics 

of the data and the needs of the users. 

If x  represents the return of the user's venture capital, x  is a random variable and its probability 

density function is ( )f x , then the value at risk with confidence level   is defined as[3]:  

𝑃(𝑥 ≤ 𝑉𝑎𝑅) = 𝛼        (2.1) 

𝛼 = ∫ 𝑓(𝑥)
𝑉𝑎𝑅

−∞
𝑑𝑥

        
(2.2) 

3. Introduction to Several Types of VaR Estimation Models 

There are three types of VAR estimation methods: non-parametric, semi-parametric, and parametric 
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[6]. More computational models are derived from this, which play a role in various financial markets. 

This paper begins with ARCH family models, then discusses three models based on these models that 

have emerged in recent years, as well as their benefits and drawbacks. 

3.1. ARCH Series Model 

To calculate VaR, the variance and standard deviation of the return rate, i.e. its volatility, must be 

estimated. Because the default volatility of the return rate did not change in the early studies, the 

volatility of the return rate was set to a constant. However, according to additional research and 

reflection on practical problems, volatility is not a constant, but rather changes with time and has heap 

and aggregation characteristics. 

3.1.1. ARCH Model 

The ARCH model was first proposed by Engle [7], whose autoregressive conditional abnormal 

difference model can provide a better explanation and analysis of volatility. He defined ( )ARCH q  

model as: 

𝑦𝑡 = 𝑢𝑡 + 𝜀𝑡(𝑡 = 1,2, ⋯ , 𝑛)       (3.1) 

𝜀𝑡 = 𝜎𝑡𝑒𝑡 , 𝐸(𝑒𝑡) = 0, 𝐷(𝑒𝑡) = 1      (3.2) 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛼2𝜀𝑡−2
2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞

2    (3.3) 

The formula (3.1) is called the mean equation of ( )ARCH q  model. t  is the random perturbation 

term of the sequence at time t. te
is a sequence of independent same-distribution residuals. The 

formula (3.3) is called the conditional equation of variance.  

However, for this model, if you want to get a better fitting effect, the lag order q  will be quite 

large, which increases the difficulty and accuracy of the model fitting. And in practice, 
2

t  does not 

necessarily satisfy the linear function conditions in the equations of variance. 

3.1.2. GARCH Model 

To improve on both shortcomings, Bollerslav generalized the ARCH model to the generalized ARCH 

model (GARCH model). The definition of the ( , )GARCH p q  model is based on the ARCH model 

definition, and the conditional equation of variance is changed as: 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1      (3.4) 

where the coefficient 0 0, 0( 1, 2, , ), 0( 1, 2, , )i ji q j p    =  =
. This avoids the defect of 

large lagging order and linear relationship on the basis of the original ( )ARCH q . 

3.1.3. TARCH Model 

After a deeper examination of the GARCH model, it was discovered that the condition that the 

coefficient in this model was not negative was difficult to guarantee, but many financial time series 

had obvious leverage effects, which the model was unable to characterize, so Zakoian proposed the 

TARCH model in the study. The TARCH model retains the GARCH model's mean equation but 

replaces the variance equation to: 

𝜎𝑡
2 = 𝛼0 + ∑ (𝛼𝑖𝜀𝑡−𝑖

2 + 𝜑𝑖𝜀𝑡−1
2 𝐼𝑡−1) + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗−1

𝑞
𝑖=1      (3.5) 
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Where when 1t −  is not negative, 1 1tI − =
; when 1t − is negative, 1 0tI − =

. This reflects the effect 

of the 1t −  symbol on 
2

t . 

3.1.4. EGARCH Model 

By 1991, Nelson had proposed the EGARCH model, which had similar advantages to the TARCH 

model in terms of characterizing the volatility of financial time series. The ( , )EGARCH p q  model is 

defined as: 

𝑦𝑡 = 𝑢𝑡 + 𝜀𝑡(𝑡 = 1,2, ⋯ , 𝑛)       (3.6) 

𝜀𝑡 = 𝜎𝑡𝑒𝑡 , 𝐸(𝑒𝑡) = 0, 𝐷(𝑒𝑡) = 1      (3.7) 

𝑙𝑜𝑔 𝜎𝑡
2 = 𝛼0 + ∑ (𝛼𝑖 |

𝜀𝑡−𝑖

𝜎𝑡−𝑖
| + 𝜑𝑖

𝜀𝑡−𝑖

𝜎𝑡−𝑖
)

𝑞
𝑖=1 + ∑ 𝛽𝑗 𝑙𝑜𝑔 𝜎𝑡−𝑗

2𝑝
𝑗=1    (3.8) 

There is no requirement for positive or negative coefficients. Also, 

t i
i

t i





−

−  and 

t i
i

t i





−

−  reflect the 

magnitude of t i −  and the effect of positive and negative changes on the variance of conditions 

3.1.5. ARMA-EGARCH Model 

Financial time series show heteroscedasticity as a whole, but they show constant variance from the 

perspective of individual time periods. In practical applications we can use the ARMA model 

(Autoregreesive-Moving Average Model) to describe time series with constant variance. The general 

form of the ( , )ARMA p q  model [8] is: 

𝑅𝑡 = 𝑐0 + ∑ 𝜙𝑖𝑅𝑡−𝑖 +
𝑝
𝑖=1 ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞
𝑗=1      (3.9) 

Where 
2(0, )t WN 

, and satisfies 
, ( ) 0ts t E R   • =

. 

In fact, the EGARCH model can accurately describe the variance time variability and leverage 

effect of the majority of financial time series. As a result, the two models can be combined, first with 

the ARMA model to characterize the mean equation, and then with the EGARCH model to depict the 

residual after the ARMA model, to theoretically better describe the fluctuations of the financial time 

series. Combined with the general expression of the ARMA and EGARCH models, the 
( , ) ( , )ARMA p q EGARCH m n−  model can be expressed as:  

𝑅𝑡 = 𝑢𝑡 + 𝜀𝑡 , 𝑢𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑅𝑖−1
𝑝
𝑖=1 + ∑ 𝛽𝑗𝜀𝑡−𝑗

𝑞
𝑗=1      (3.10) 

𝜀𝑡 = 𝜎𝑡𝑒𝑡 , 𝐸(𝑒𝑡) = 0, 𝐷(𝑒𝑡) = 1 (3.11)     (3.11) 

𝑙𝑜𝑔 𝜎𝑡
2 = 𝜙0 + ∑ (𝜙𝜅 |

𝜀𝑡−𝜅

𝜎𝑡−𝜅
| + 𝜑𝜅

𝜀𝑡−𝜅

𝜎𝑡−𝜅
)𝑚

𝜅=1 + ∑ 𝜃𝜉 𝑙𝑜𝑔 𝜎𝑡−𝜉
2𝑛

𝜉=1     (3.12) 

where te
 is an independent residuals sequence with the same distribution; t  is the standard 

deviation of the sequence tR
; t  is a random perturbation term that enters the system at t moment, 

and satisfies:  
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3.2. ARMA-EGARCH-GPD Model 

3.2.1. Generalized Pareto Distribution 

Generalized Pareto distribution (GPD) [9], is a right-skewed distribution that is generally expressed 

as [9]: 

𝐺𝜏,𝛾(𝑦) = {
1 − (1 +

𝜏𝑦

𝛾
)−

1

𝜏      𝜏 ≠ 0

1 − 𝑒
−

𝑦

𝛾                 𝜏=0

      (3.14) 

Where 

[0, ]     0

[0, ]         <0

Fx u

y y






− 



−



, Fx  is the right endpoint of the distribution function F. 

Let the random variable X  of the independent same distribution satisfy the unknown distribution 

as ( )F X , and when given a determined threshold of u , if you make y x u= − , there is a conditional 

super-threshold distribution function 
( ) ( )uF y P x u y x u= −  

. If the threshold value u  is large 

enough, the conditional over-threshold distribution function uF
 is similar to GPD, that is 

,( ) ( )uF y G y 
. 

From this equation (3.14) can be deformed to: 

𝐹𝑢(𝑦) =
𝐹(𝑥)−𝐹(𝑦)

1−𝐹(𝑢)
         (3.15) 

In the equation(3.15), with 
(1 )un

n
−

 as the estimation of ( )F u  (where n  is the total number of 

samples and un
 is the number of numbers in the sample whose values are greater than the threshold 

of u , then the tail estimation function of the distribution function ( )F X  can be obtained: 

�̂�(𝑥) = {
1 −

𝑛𝑢

𝑛
[1 +

�̂�

�̂�
(𝑥 − 𝑢)]−

1

�̂�     �̂� ≠ 0

1 −
𝑛𝑢

𝑛
𝑒

−
𝑥−𝑢

�̂�                      �̂� = 0
      (3.16) 

where 
ˆˆ,   are the estimation of parameter ,   in the GPD by the maximal likelihood method 

respectively. For sample 
( , )i i i iy y x u x u= − 

 beyond the threshold u , the likelihood function of the 

generalized Pareto function is: 

𝑙 = {
−𝑛𝑢 𝑙𝑜𝑔 𝛾 + (

1

𝜏
− 1) ∑ 𝑙𝑜𝑔( 1 −

𝜏𝑦𝑖

𝛾
)     𝜏 ≠ 0

𝑛𝑢
𝑖=1

−𝑛𝑢 𝑙𝑜𝑔 𝛾 −
1

𝛾
∑ 𝑦𝑖

𝑛𝑢
𝑖=1                            𝜏 = 0

    (3.17) 

If the two formulas of the tail estimation function are equal to 1 −  (   is the significant level ) 

, the expression of the upper tail   quantile function 
VaR  of the Pareto distribution can be 

regurgitated: 
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𝑉𝑎𝑅𝛼 = {
𝑢 +

�̂�

�̂�
[(

𝑛

𝑛𝑢
𝛼)−�̂� − 1]     �̂� ≠ 0

𝑢 − �̂� 𝑙𝑛
𝑛

𝑛𝑢
𝛼

                  �̂�=0

     (3.18) 

3.2.2. Introduction of ARMA-EGARCH-GPD Model 

For independent time series with the same distribution, the extreme value theory can be applied to 

the unprocessed time series to calculate VaR. The general time series model is not independent of the 

same distribution, at this time it needs to be filtered by the ARCH series model, and the resulting 

residual sequence can meet the conditions of independent same distribution. Therefore, it is 

theoretically possible to combine extreme value theory and ARCH family models to study VaR. At 

the same time, with a large number of empirical analysis studies by scholars in recent years, the 

accuracy of this method in calculating VaR has also been confirmed. In the ARCH series model, the 

ARMA-EGARCH model has the dual advantages of ARMA model characterizing the constant 

variance and the EGARCH model characterizing heteroscedasticity, leverage effect, etc. 

Therefore, when estimating VaR in this paper, the mean tu
, standard deviation t  and 

corresponding residual sequence 
 te

 of the t-time sequence 
 tR

 are estimated by establishing an 

ARMA-EGARCH model for sequence 
 tR

, and then use the GPD model to characterize the tail 

cloth of the 
 te

 sequence to obtain eVaR
, and finally get the estimate of VaR from 

t t t eVaR u VaR= +
. Because this estimation model is a combination of the ARMA-EGARCH model 

and the GPD model, it is called the ARMA-EGARCH-GPD model [2]. 

3.2.3. Advantages and Disadvantages 

The ARMA-EGARCH-GPD model is theoretically accurate, and no special restrictions are required 

for general time series to obtain more accurate VaR values. It overcomes the hypothetical linear 

function situation required by the ARCH model, the parameter non-negative condition required by 

the GARCH model, and can accurately and widely characterize the fluctuation situation and leverage 

effect of the sequence. The GPD model's depiction of the end of the sequence also makes the 

calculation of VaR more reasonable in comparison to the extreme value theory.  

This method, however, is more time-consuming, and the thresholds in the GPD model cannot be 

too large or too small. Quantile estimation is time-consuming. 

3.3. ARMA-EGARCH-semi-parametric Model 

3.3.1. Introduction of ARMA-EGARCH-semi-parametric Model 

ARMA-EGARCH-GPD model is more accurate in theory, but the method is more cumbersome, 

ARMA-EGARCH-semi-parameter methodcombines parameter method and historical simulation 

method on the basis of extreme value theory, avoiding cumbersome quantile calculation [2]. 

Similar to the previous section, we can estimate tu
 and t  by building an ARMA-EGARCH 

model using parametric methods. According to VaR's general calculation formula 

𝑉𝑎𝑅𝑡 = 𝑢𝑡 + 𝜎𝑡𝑋1−𝛼        (3.19) 

only the 1 − quantile 1X −  of the normalized distribution function of sequence 
 tR

 is required. 

Inspired by the historical simulation method, we can first obtain VaR through the historical simulation 
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method, and then substitute the general formula to find 1X − . The specific method is: the sequence 

 tR
 is sorted from the largest to the smallest, take the sample point value corresponding to the total 

number of samples of 1 −  times as 0VaR
, and set the standard deviation of the series to be 0  and 

the mean to be u , then: 

𝑋1−𝛼 =
𝑉𝑎𝑅0−𝑢

𝜎0
        (3.20) 

The estimate of 1X −  is obtained by historical simulation, and the VaR estimate is obtained by 

bringing tu
 and t  obtained by the parameter method into the formula (3.19). 

Because this method is to estimate VaR by using the ARMA-EGARCH model to estimate the 

parameter and nonparametric method to obtain quantiles, this model is called ARMA-EGARCH - 

semiparametric model. 

3.3.2. Advantages and Disadvantages 

ARMA-EGARCH-semi-parametricmodel combines the characteristics of the ARMA model to fit the 

constant variance and the EGARCH model to fit the heteroscedasticity effectively [10]. And instead 

of directly using the historical simulation method to find the quantile, but combining the parameter 

method on the basis of the historical simulation method, which avoids any assumptions about the 

distribution of the return, and can make the quantile more in line with the actual distribution. However, 

the method of estimating 
1X −  using historical simulation is not necessarily optimal, so this model is 

not necessarily the optimal model for a particular sequence, and then you can study the estimation 

method of 
1X −  to obtain the optimal model. 

3.4. Generalized-EWMA Model 

3.4.1. Introduction of Generalized-EWMA Model 

Exponentially weighted moving average (EWMA) decreases the weighted coefficient of each value 

exponentially over time. The closer to the current moment, the bigger the numerical weighting 

coefficient. This approach does not need to save all prior data, unlike standard averaging methods. 

Second, the quantity of calculation has been minimized. In VaR estimation, for the square of the 

continuous compound return, EWMA can be used to get a prediction of conditional variance 2 , and 

then take its square root to get an estimate of conditional volatility p . But the square root of the 

variance is an inefficient estimate of volatility, so we can directly estimate volatility and get the 

optimal VaR prediction through a data-driven generalized EWMA model. 

Because the conditional distribution of financial returns tends to be heavy tail with large peaks, 

and in VaR estimation, the mean of the return sequence   is usually set to 0. By analogy with the 

GARCH model of conditional variance, based on the recursive form of volatility estimation 

�̂�𝑛+1 =
𝑛

𝑛+1
�̂�𝑛 +

1

𝑛+1

|𝑟𝑛+1−𝜇|

𝜌
       (3.21) 

a data-driven generalized EWMA model of time-varying volatility is proposed [5]: 

�̂�𝑡+1 = 𝛼�̂�𝑡 + (1 − 𝛼)
|𝑟𝑡|

𝜌
, 𝛼 ∈ (0,1)     (3.22) 

Therefore, we can predict the VaR value at the moment of t+1 with the following formula: 
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𝑉𝑎𝑅𝑡+1(𝑝) = −𝜎𝑡+1𝐹𝑅
−1(𝑝)      (3.23) 

3.4.2. Advantages and Disadvantages 

One of the obvious advantages of generalized EWMA models is that the estimation of   can be used 

to identify t-distributions with appropriate degrees of freedom, and this method avoids false 

specifications of the model. When the t distribution's degrees of freedom are fewer than 4, the 

TGARCH model's projected variance of the conditional variance becomes infinite, hence it can't be 

employed. Generalized EWMA can compensate for this issue, and its estimated asymptotic variance 

is substantially smaller than the standard estimate, making it ideal for financial data. 

4. Conclusion 

In this paper, the ARMA-EGARCH-GPD model is based on the relationship between the risk value 

of the original sequence and the risk value of the corresponding residual sequence: 
t t t eVaR u VaR= + , 

the ARMA-EGARCH model is first used to estimate the 
t  and 

tu  of the original time series, and 

then the GPD model in the extreme value theory is used to fit the residual sequence and estimate the 

eVaR , so as to estimate the VaR of the original sequence. The ARMA-EGARCH-semi-parametric 

model is based on the general calculation formula of VaR (3.19), and similarly, the ARMA-EGARCH 

model is used to fit the time series, estimating to 
t  and 

tu , and then using the historical simulation 

method to obtain 
1X −  inversely, and finally obtaining the estimate of VaR. For models with infinite 

kurtosis, VaR can be estimated using a generalized EWMA volatility model in the recursive form of 

volatility estimation.  

As for the limitations, the model proposal in this paper is only theoretical and does not include 

regression testing or practical application. Because VaR is an estimate, the model that estimates VaR 

must be tested, with the main idea being to count the total number of times lost in the entire sample 

exceeds the VaR value. In future studies, authors should link specific examples to more intuitively 

study the advantages and disadvantages of these VaR models. 
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