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Abstract: Amidst global and Chinese uncertainties, this paper delves into stock market 

volatility and option pricing within the current economic policy context. Focusing on China's 

stock market, it calculates returns and volatility changes in key indices, analyzing differences 

among indices and funds, along with temporal variations. Shared data characteristics and 

reflections on new market trends emerge. Employing methods such as the GARCH model, 

Black-Scholes formula, and Monte Carlo algorithm, it analyzes volatility and option pricing 

using extensive annual and monthly data. Visualizations showcase market change patterns. 

The study defines volatility as a measure of financial asset price fluctuation extent, reflecting 

asset risk. Higher volatility indicates pronounced price fluctuations and uncertainty, while 

lower volatility signifies smoother fluctuations and greater certainty. Merging data with 

volatility's significance, the study probes China's securities market uncertainty, investigating 

the link between option pricing and volatility. It concludes by identifying the connection 

between volatility, uncertainty, and option pricing, pointing to future research directions and 

challenges. Future work will track the latest market trends to enrich understanding. 

Keywords: volatility, GARCH model, Monte Carlo algorithm, Black-Scholes pricing formula, 

uncertainty 

1. Introduction 

In today's world, uncertainty has become a prevailing norm. From an international perspective, factors 

such as the ongoing aftermath of the pandemic, potential risks arising from geopolitical crises, and 

global economic growth deceleration pose significant challenges to the financial industry. The 

Economic Policy Uncertainty (EPU) index serves as a metric to gauge economic policy uncertainty. 

This index reflects the uncertainty that global investors perceive in economic policies, encompassing 

political, economic, and social aspects. The changing trend of China's EPU over the past two decades 

is depicted in the following figure: 
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Note: Data source http://www.policyuncertainty.com/ 

Figure 1: Changing trend of China's EPU. 

In recent years, the EPU index has consistently remained at a higher level, indicating the escalating 

uncertainty in China's economic domain. Political uncertainties hold far-reaching impacts on the 

global economy and financial markets. For instance, events like the US presidential elections and the 

Russia-Ukraine conflict could alter the global economic landscape, affecting exchange rates, trade 

policies, economic growth prospects, etc. Economic uncertainties also significantly influence global 

financial markets. Economic recessions in emerging markets, escalating international trade barriers, 

and employment concerns arising from technological shifts contribute to uncertainty in the global 

financial markets. 

For China, internal and external uncertainties also impact the financial industry. Matters such as 

domestic macroeconomic stability, financial regulatory policies, and corporate debt could influence 

the financial markets. Global economic growth slowdowns and trade protectionism contribute to 

volatility in China's financial markets. 

These uncertainties primarily manifest their impact on the financial industry and financial 

derivatives in the following ways: First, they can exacerbate market volatility and amplify panic 

sentiments, leading to substantial asset price declines, market liquidity tightness, and other risks. 

Second, they can trigger credit risks within financial institutions, resulting in debt defaults and asset 

impairments. Third, they can influence the financial derivatives market, causing decreased trading 

volumes and reduced risk preferences among market participants. In the current globally uncertain 

environment, the financial industry and financial derivatives market face both challenges and 

opportunities. Maximizing investor returns necessitates a thorough understanding and management 

of various uncertainty factors. 

Options, as one of the financial derivatives, hold a significant position in the financial market. The 

uncertainty of options is influenced by market conditions and environments, closely tied to option 

pricing. Volatility, as a measure of uncertainty, plays a pivotal role in option pricing. The 

development of China's options market can be summarized in four aspects: 

Initial stage of development: China's options market was in its nascent stage of development. Prior 

to 2015, the market was predominantly dominated by over-the-counter options, while on-exchange 

options were introduced by the Shanghai Stock Exchange only in 2015. In terms of off-exchange 
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options, the trading volumes in both the interbank market and exchange market had reached 

significant levels, although on-exchange options market was relatively smaller. 

Rapid development: Despite a later start, China's options market has experienced rapid growth. 

Taking the Shanghai 50ETF options as an example, its trading volume has surpassed that of many 

mature market options, establishing itself as a vital risk management tool in the Chinese capital 

market. 

Expansion of option contract types and scales: With the continuous development of the options 

market, the types and scales of options have expanded. Presently, China has launched various types 

of options including equity options, commodity options, and financial futures options. 

Simultaneously, exchanges are actively pushing for the introduction of new option varieties. 

Diversified options trading methods: In addition to on-exchange trading at securities companies, 

investors can also access option investment opportunities through private transactions with others. 

In summary, China’s options market, while still in its initial developmental stage, has 

demonstrated a trajectory of rapid growth, and it holds the potential to become a significant 

component of the capital market in the future. Amid uncertainties, comprehensive research on options 

and option pricing aids in understanding and assessing risks in financial markets, providing effective 

risk management tools for investors. As a financial derivative, options help investors mitigate 

portfolio risks and enhance returns. Research on option pricing contributes to the reasonable 

determination of market prices, upholds market stability, and promotes the healthy development of 

financial markets. 

2. Literature Review 

One of the key issues in option pricing is the valuation of assets under conditions of uncertainty. 

Uncertainty is a characteristic of financial markets, and traditional finance theory assumes rational 

investors in asset pricing under uncertain circumstances. This has given rise to models such as the 

Capital Asset Pricing Model, the Three-Factor Model, and the Black-Scholes option pricing model 

[1]. In this context, uncertainty refers to the probabilistic uncertainty of future events, i.e., traditional 

risk, leading to the existence of a definite equilibrium price for assets. Uncertainty is omnipresent, 

impacting underlying asset prices sometimes stably and other times unpredictably. There are different 

types of asset uncertainties. Knight distinguished between known uncertainty (risk) and unknown 

uncertainty. The former is confined to a unique probability distribution that is known, while in the 

latter case, some probability measure information is known, but not all required information can be 

accurately or fully ascertained. The type of distribution is known, but the distribution parameters are 

not [2]. 

For complex and variable financial markets, the volatility of underlying asset prices is just one 

aspect affecting option prices, and option pricing is one of the pivotal issues in finance. The classical 

option pricing formula includes the Black-Scholes pricing formula. The Black-Scholes option model's 

assumptions are overly idealized, as its assumptions of log-normal distribution of returns, continuous 

trading processes, and constant volatility are often hard to meet in reality [3]. Research on financial 

asset return and derivative price time series has shown at least three deviations from Brownian motion. 

Firstly, asset price jumps lead to non-normal distribution of returns. Secondly, asset return volatility 

varies stochastically over time. Thirdly, there exists a "leverage effect," manifested by a negative 

correlation between asset returns and their volatility, which is typically the case for equity-based 

financial assets. Furthermore, research has found systematic biases in the Black-Scholes model for 

pricing stock index options, particularly when options are out of the money. Additionally, the joint 

estimation of stock returns and volatility derivatives using the GARCH option pricing approach has 

proven highly beneficial, highlighting the utility of volatility derivatives in GARCH option valuation 

[4]. 
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In the context of China's options market, scholars have been exploring the constant-setting issues 

of volatility and interest rates in option pricing since the introduction of the Black-Scholes model. 

Introducing floating interest rates into local volatility models has improved pricing effectiveness. 

Utilizing data from the Shanghai and Shenzhen 300 stock index options, a comparison was made 

between in-sample pricing errors and out-of-sample pricing errors, with empirical results suggesting 

the superiority of the stochastic volatility incentive model over the stochastic volatility incentive 

model [5]. The option pricing problem under Brownian motion is controlled by the fractional 

diffusion equation of controlled subordinate Brownian motion, characterized by self-similarity, 

peakedness, long memory, and other financial properties. These properties suggest that fractional 

calculus can aptly describe financial data [6]. Researching option pricing problems under the 

assumption that stock prices are driven by subordinate Brownian motion can derive closed-form 

pricing formulas for European options. 

Options are widely traded in China's stock, fixed-income fund, foreign exchange, and commodities 

markets, playing significant roles in speculative profits and risk hedging. This has sparked interest 

among researchers in option valuation. Existing option pricing methods can be broadly categorized 

into numerical analysis methods and analytical approximation methods. Numerical methods include 

binomial tree methods and Monte Carlo methods; however, they are time-consuming and may 

sacrifice accuracy due to computational costs [7]. Hence, research on analytical approximation 

methods has become an important field. Classic Black-Scholes option pricing models play a vital role 

in financial markets, and investigating option pricing problems is a key factor and pioneer in modern 

financial engineering and computational fields, yielding fruitful results in practical economic life [8]. 

In numerous hidden options such as insurance premium pricing and intangible assets, valuation, 

prepaid term deposit, various convertible options, the prices of financial instruments imply volatility 

and uncertainty. The theory and models of option pricing are highly complex, yet their utilization is 

simple. Financial derivatives, including stocks, bonds, currencies, commodities, and more, are 

reasonably valued. The Black-Scholes option pricing model assumes that asset prices change 

continuously and follow Brownian motion. Research indicates that asset prices sometimes change 

discontinuously, experiencing jumps in unforeseen circumstances, which can lead to prediction biases 

in option pricing [9]. 

In this paper, the classical Black-Scholes pricing formula is used to compute option prices and 

Greek letters. The Monte Carlo method is adopted for option pricing, and the GARCH model is used 

to analyze the monthly volatility of the Shanghai and Shenzhen indices. Additionally, both the Monte 

Carlo and Black-Scholes pricing formula methods are employed to analyze the volatility and option 

pricing of multiple stock indices, investigating the uncertainty of stock market options. Using intuitive 

line graphs, the monthly and annual changes in volatility are reflected, confirming that volatility is 

not entirely constant as assumed by the ideal model, but rather significantly relates to the year and 

bull-bear market cycles. Different indices and funds exhibit varying patterns of volatility changes. 

Consequently, the value of target options will be influenced by instantaneous volatility under other 

equivalent conditions. Pricing options using the Black-Scholes formula achieves good results under 

relatively stable volatility conditions. 

3. Data and Models 

3.1. Black-Scholes Pricing Formula 

Let V (0, S0) represent the fair price (at time 0) of a European call option with a strike price of K and 

expiration date T. The Black-Scholes option valuation formula is given by: 

 V(t, S0) = S0Φ(d1) − Ke
−r(T−t)Φ(d2) (1) 
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Short Hedge for European Call Options: 

A holding of Δ = cx(t, x) shares of stock is needed, with a value of xcx(t, x). 
The cash market account position is: 

 M = c(t, x) − xcx(t, x) = −Ke
−r(T−t)Φ(d2) (2) 

Based on the BS formula: 

 c(t, x)  = xΦ(d1) − Ke
−r(T−t)Φ(d2)  = xcx(t, x) − Ke

−r(T−t)Φ(d2) (3) 

Long Hedge for European Call Options: 

A short sale of Δ = cx(t, x) shares of stock is required, with a value of xcx(t, x). 
The cash market account position is: 

 M = xcx(t, x) − c(t, x) = Ke
−r(T−t)Φ(d2) (4) 

3.2. Brownian Motion 

Geometric Brownian Motion (GBM), also known as exponential Brownian motion, is a continuous-

time stochastic process where the logarithm of the random variable follows a Brownian motion 

process. In the case where the stochastic differential equation is satisfied, the process St is considered 

to follow geometric Brownian motion: 

 dS(t) = αS(t)dt + σS(t)dW(t) (5) 

Here, Wt is a Wiener process, or Brownian motion, and the drift percentage μ and volatility 

percentage σ are constants. 

3.3. Monte Carlo Method 

The Monte Carlo method, or Monte Carlo experiment, is a class of computational algorithms that 

relies on repeated random sampling to obtain numerical results. The fundamental concept is to use 

randomness to solve problems that may, in principle, have deterministic solutions. Law of Large 

Numbers: If 𝑋1, 𝑋2, …𝑋𝑛 are independent and identically distributed, with 𝐸(𝑋1) = 𝜇 < ∞, then: 

 
1

n
∑ Xi

a.s
→ n

i=1  E(X1) (6) 

If f(∙) is a continuous mapping and E(f(Xi)) < ∞: 

 
1

n
∑ f(Xi)

a.s
→ n

i=1  E(f(Xi)) (7) 

Compute the integral ∫ g(x)dx
b

a
: 

        ∫ g(x)dx = ∫
g(x)

f(x)

b

a
f

b

a
(x)dx = Ef (

g(x)

f(x)
) ≈

1

n
∑

g(xi)

f(xi)
n
i=1  (8) 
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Random samples 𝑥1, 𝑥2, … 𝑥𝑛~𝑓(𝑥) are drawn, and calculations are performed for 
1

𝑛
∑

𝑔(𝑥𝑖)

𝑓(𝑥𝑖)
𝑛
𝑖=1 . 

When x lies within the interval [𝑎, 𝑏] , first sample 𝑧  on [0,1] , then transform 𝑥 = 𝑏 + (𝑏 −
𝑎)(𝑧 − 1). 

3.4. GARCH Model 

Traditional econometrics assumes the second hypothesis that the amplitude of volatility (variance) of 

time series variables is constant, which contradicts reality. For instance, it's long been recognized that 

the volatility of stock returns changes over time rather than remaining constant. This renders 

traditional time series analysis ineffective for practical problems. 

The GARCH (p, q) model introduces a relationship for the instantaneous volatility σt: 

 σt
2 = α0 + α1dt−1

2 +⋯+ αqdt−q
2 + β1σt−1

2 +⋯+ βpσt−p
2 (9) 

4. Empirical Analysis 

The closing index of the Shanghai Composite Index is used to simulate the changes in the stock 

market and stock option pricing. First, extract the closing index of the Shanghai Composite Index 

from January 1997 to the present, and calculate the logarithmic return rate for each month compared 

to the previous month: 

 Monthly Return Rate= ln (
Price This Month

Price Last Month
) (10) 

Generate the trend chart of monthly return rates for the Shanghai Composite Index: (x-axis 

represents year and month, y-axis represents return rate) 
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Figure 2: Trend chart of monthly return rates for the Shanghai composite index. 
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Analyze the changes in the monthly return rates of the Shanghai Composite Index and use the 

GARCH model to analyze the volatility variance of the index. Estimate the index's volatility, calculate 

the monthly volatility, generate a sequence of volatility, and plot it as a line chart. 
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Figure 3: Monthly volatility of the Shanghai composite index. 

Table 1: Analysis results of the GARCH model. 

Dependent Variable: SERIES01  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Date: 08/18/23   Time: 18:18  

Sample: 1997M01 2023M06   

Included observations: 318   

Convergence achieved after 21 iterations 

Coefficient covariance computed using outer product of gradients 

Presample variance: backcast (parameter = 0.7) 

GARCH = C(1) + C(2)*RESID(-1)^2 + C(3)*GARCH(-1) 

Variable Coefficient Std. Error z-Statistic Prob.   

 Variance Equation   

C 6.13E-05 2.72E-05 2.251367 0.0244 

RESID(-1)^2 0.224764 0.051195 4.390328 0.0000 

GARCH(-1) 0.725687 0.054815 13.23893 0.0000 

R-squared -0.002698     Mean dependent var 0.001638 

Adjusted R-squared 0.000455     S.D. dependent var 0.031590 

S.E. of regression 0.031583     Akaike info criterion -4.233169 

Sum squared resid 0.317197     Schwarz criterion -4.197678 

Log likelihood 676.0739     Hannan-Quinn criter. -4.218994 

Durbin-Watson stat 1.780501    

 

The analysis reveals significant differences in volatility across different years, with higher 

volatility during 2006-2010 and 2014-2016, indicating periods of increased market activity. The 

overall mean volatility is 0.001638. According to the Black-Scholes pricing formula and the Greek 
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letter vega, options prices corresponding to the market during these periods should also be higher, 

and option prices are more sensitive to fluctuations in stock prices. Given the heightened uncertainty 

in today's internal and external environments, the volatility of the stock market might be influenced. 

Thus, studying historical A-share market volatility is highly valuable for the options market. 

Volatility and option prices are closely related, as reflected in the Greek letter Vega. Their relationship 

is depicted in the following chart: 

 

Figure 4: Relationship between vega and stock price and time. 

A similar treatment is applied to the SZSE Component Index. Extract the closing prices of the 

SZSE Component Index from May 1998 to June 2023, calculate the logarithmic return rate for each 

month, apply the GARCH model to calculate the volatility sequence based on the logarithmic return 

rate, and plot it as a line chart. 
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Figure 5: Volatility of the SZSE component index. 

Observations indicate that the SZSE Component Index has higher volatility, yet the monthly 

fluctuations are not as significant as those of the Shanghai Composite Index, suggesting internal 
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differences within the securities market. The Shanghai Composite Index generally better represents 

the overall A-share market performance, while the SZSE Component Index reflects the activity of a 

subset of stocks. By considering both indices, two peaks in volatility align with the same years, 

reflecting the similarity in volatility between the two indices. 

A similar method is applied to calculate the volatility of the ChiNext Index, and the line chart is 

shown below. 
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Figure 6: Volatility of the ChiNext index. 

The volatility of the ChiNext Index from 2010 to 2023 shows smaller changes, within 10%. This 

may be related to index calculation methods and national policies. A volatility peak also appeared 

around 2015, indicating consistency in the market's volatility response across the three major indices. 

For the ChiNext ETF Fund (159915), which has underlying options, the closing price is calculated 

for volatility and return rate using the same method, and the chart is plotted. 
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Figure 7: Volatility of the ChiNext ETF fund. 
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Due to the close correlation between ETF fund prices and indices, their volatility is almost identical 

to that of the ChiNext Index. 

A similar process is applied to the SSE 50 ETF Index Fund, using annual data for simplicity. The 

closing price on the last day of each year is used as the dataset. 
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Figure 8: Annual volatility of the SSE 50 ETF index fund. 

The SSE 50 ETF Index Fund has higher volatility compared to the Shanghai Composite Index, 

with larger inter-year changes. However, the cycles of volatility change are relatively stable, and there 

are no prominent peaks. Peaks occurred around 2009, 2014, and 2019, reflecting differences between 

index funds and overall market trends. This explains the advantage of index funds as option 

underlyings. 

Using the same method, monthly closing prices of the SSE 300 ETF Index Fund are analyzed for 

returns and volatility. Monthly closing prices: 
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Figure 9: Monthly prices of the SSE 300 ETF index fund. 
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Volatility: 

Table 2: GARCH model analysis results for the SSE 300 ETF index fund. 

Variable Coefficient Std. Error z-Statistic Prob.   

 Variance Equation   

C 0.000590 0.000274 2.155743 0.0311 

RESID(-1)^2 0.238765 0.091454 2.610769 0.0090 

GARCH(-1) 0.633472 0.093186 6.797920 0.0000 

R-squared -0.002160     Mean dependent var 0.002961 

Adjusted R-squared 0.005858     S.D. dependent var 0.063962 

S.E. of regression 0.063774     Akaike info criterion -2.714741 

Sum squared resid 0.508395     Schwarz criterion -2.646861 

Log likelihood 172.6713     Hannan-Quinn criter. -2.687165 

Durbin-Watson stat 1.706021    
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Figure 10: Monthly volatility of the SSE 300 ETF index fund. 

The volatility of the SSE 300 ETF remains around 1.00, with relatively minor fluctuations over 

time. The variation in the past three years does not exceed 5%. The SSE 300 ETF Index Fund has 

underlying options and exhibits stable volatility, making it suitable for simulating option pricing using 

the option pricing formula. Given the stable volatility in the past three years, the monthly volatility 

over this period is calculated and the average value is taken as the overall volatility estimate for this 

fund: 

 σ = σ̅ = 1.0128 (11) 

The average price for the first half of the year 2023 is used to simulate the current price of the 

underlying asset: 
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 S = S̅ = 3.9998 (12) 

Three different strike prices are considered: In-the-money K1 = 3.0, At-the-money K2 = 3.9998, 

and Out-of-the-money K3 = 5.0. The expiration time is set to T = 3, and the risk-free interest rate is 

taken as the annual deposit rate r = 0.0175/12 ≈ 0.00146. 

Using the Black-Scholes formula, the option prices for the 300 ETF are calculated in Matlab, with 

the following results: 

Table 3: Results of option pricing using the BS formula. 

>>BScall(3.9998,3.9998,3,0.0146,1.0128) 

Y=2.4815 

 

Using the Monte Carlo algorithm to simulate 10 million iterations for numerical integration, the 

results for European call options are as follows: 

Simulated price, variance, and upper and lower bounds: 

Table 4: Option pricing results using the Monte Carlo method. 

>>BScall(3.9998,3.9998,3,0.0146,1.0128) 

2.4698 2.4592 2.4559 

0.1634 2.4804 2.4837 

Table 5: Simulation results for different strike prices using two methods. 

Strike Price 3.0 3.9998 5.0 

Option Value (BS) 2.6936 2.4815 2.3086 

Option Value (Monte 

Carlo) 

2.6992 2.4698 2.3095 

 

Comparison of the two methods reveals that the Monte Carlo method produces results very close 

to the pricing results of the BS formula through multiple experiments. Sensitivity analysis is 

conducted by altering parameters. When the expiration time T is changed to 6, the price differences 

between at-the-money, out-of-the-money, and in-the-money options simulated using the Monte Carlo 

method narrow. This indicates the influence of time value, implying that when holding options for an 

extended period, intrinsic value will be less significant than the impact of time value on options, 

reflecting the meaning of the Greek letter theta. 

5. Conclusion and Implications 

This study analyzed the volatility of various underlying funds related to the three major stock indices 

and simulated option pricing. By calculating representative indicators of China's stock market, the 

volatility's changes over time were validated. The similarities and differences in volatility among 

different indices and underlying assets were analyzed. The results revealed that, under the condition 

of calculating monthly price volatility, for certain securities indicators, the volatility did not exhibit 

significant fluctuations over time, remaining within a range of ±10% around the mean. Examples 

include the SZSE Component Index, ChiNext Index, and the SSE 300 ETF Fund. In contrast, other 
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securities, such as the SSE Composite Index and the 50 ETF Fund, displayed much greater volatility, 

reflecting internal variations within the stock market. For the category of securities with significant 

monthly volatility changes (∆σ), directly substituting the mean volatility into the BS formula for 

option pricing is inaccurate. For these securities, short-term volatility or instantaneous volatility holds 

greater reference value. Conversely, for the category with relatively stable volatility, using the BS 

pricing formula provides a more accurate approximation of option pricing, aligning closer with actual 

conditions. Regarding the simulation of option pricing for the SSE 300 ETF Fund, altering the time 

parameter within the pricing formula showed that as the expiration time increases, the differences in 

option prices for various strike prices diminish. This implies that the fund's high volatility and 

substantial price changes render the market more active and the options possess a higher time value. 

On the other hand, the volatility changes in major indices and funds exhibit similarities, reaching 

peak points during the same periods. Years with active market trading consistently witnessed higher 

volatility, demonstrating a certain degree of cyclicality. Returning to the theme of uncertainty, recent 

years have seen intensified economic policy uncertainty. Nevertheless, the study found that the 

volatility of major indices has not increased compared to historical years; rather, it has remained 

relatively stable. This is a shared characteristic among them. This suggests that, currently, the impact 

of global uncertainty on the stock market is somewhat limited. Influenced by the expansion of market 

size and policy interventions, the stock market's volatility has remained relatively stable over the past 

three years. These findings provide insights for understanding the future changes in market volatility, 

the direction of the options market, and investment choices. The future options market will continue 

to present both opportunities and risks. Whether in rapidly changing markets or in markets that are 

becoming more stable, understanding market patterns and adapting to them is essential for optimizing 

investment returns. 
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